Chứng minh rằng:
a)10^n-36^n-1 chia hết cho 27 và n thuộc N; n lớn hơn hoặc bằng 2
Chứng minh rằng:
a) ( n^5 - n) chia hết cho 30
b) ( n^4 - 10n^2 + 9) chia hết cho 384(n lẻ thuộc Z)
c) ( 10^n + 18n - 28) chia hết cho 27 ( n thuộc N)
Chứng minh rằng:
a) ( n^5 - n) chia hết cho 30
b) ( n^4 - 10n^2 + 9) chia hết cho 384(n lẻ thuộc Z)
c) ( 10^n + 18n - 28) chia hết cho 27 ( n thuộc N)
a) Chứng minh rằng: nếu 4.abc +deg chia hết cho 83 thì abc.deg chia hết cho 83
b) Chứng minh rằng nếu ab=3.cd thì abcd chia hết cho 43
c) Chứng minh rằng nếu abcd chia hết cho 29 thì a+3.b+9.c+27.d chia hết cho 29
d) Chứng minh rằng 10n - 36.n-1 chia hết cho 9 với n thuộc N và n lớn hơn hoặc bằng 2
a) Chứng minh rằng: nếu 4.abc +deg chia hết cho 83 thì abc.deg chia hết cho 83
b) Chứng minh rằng nếu ab=3.cd thì abcd chia hết cho 43
c) Chứng minh rằng nếu abcd chia hết cho 29 thì a+3.b+9.c+27.d chia hết cho 29
d) Chứng minh rằng 10n - 36.n-1 chia hết cho 9 với n thuộc N và n lớn hơn hoặc bằng 2
mk cung dang mac bai nay nen mong nhieu bn giup do chi nha !
Đang định hỏi thì ....
Bài 4: Chứng minh rằng:
a) \(4^{10}+4^7\) chia hết cho 65
b) \(10^{10}-10^9-10^8\) chia hết cho 89
Bài 5. Tìm số tự nhiên n để:
a) 5n+4 chia hết cho n
b) n+6 chia hết cho n+2
c) 3n+1 chia hết cho n-2
d) 3n+9 chia hết cho 2n-1
Bài 6: chứng minh rằng:
\(\overline{abab}\) chia hết cho 101
\(\overline{abc-\overline{cba}}\) chia hết cho 9 và 11
Bài 5:
b: Ta có: \(n+6⋮n+2\)
\(\Leftrightarrow n+2\in\left\{2;4\right\}\)
hay \(n\in\left\{0;2\right\}\)
c: Ta có: \(3n+1⋮n-2\)
\(\Leftrightarrow n-2\in\left\{-1;1;7\right\}\)
hay \(n\in\left\{1;3;9\right\}\)
1. Với mọi a,b,n thuộc N thì B = ( 10n - 1 ) .a + (11....1 -n).b chia hết cho 9 ( có n chữ số 1 )
2. Chứng minh rằng:
a) 10n- 36n -1 chia hết cho 27 với n thuộc N; n nhỏ hơn hoặc bằng 2
b) số 11...1 chia hết cho 27 ( có 27 chữ số 1 )
3. cho a - 5b chia hết cho 17 ( a,b thuộc N ). Chứng minh rằng 10a+b chia hết cho 17
4. Chứng minh rằng : n(2n+1 )( 7n +1 ) chia hết cho 6 với n thuộc N
5. Cho hai số tự nhiên abc và deg đều chia 11 dư 5 . Chứng minh rằng số abcdeg chia hết cho 11
6. Cho biết số abc chia hết cho 7. Chứng minh rằng: 2a +3b +c chia hết cho 7
15. Chứng tỏ rằng:
a) (n + 10)(n + 15) chia hết cho 2
b) n(n + 1)(2n + 1) chia hết cho 2 và 3.
15. Chứng tỏ rằng:
a) (n + 10)(n + 15) chia hết cho 2
b) n(n + 1)(2n + 1) chia hết cho 2 và 3.
\(a,\left(n+10\right)\left(n+15\right)\)
Với n lẻ \(\Rightarrow n=2k+1\left(k\in N\right)\)
\(\Rightarrow\left(n+10\right)\left(n+15\right)=\left(2k+11\right)\left(2k+16\right)=2\left(k+8\right)\left(2k+11\right)⋮2\)
Với n chẵn \(\Rightarrow n=2q\left(q\in N\right)\)
\(\Rightarrow\left(n+10\right)\left(n+15\right)=\left(2q+10\right)\left(2q+15\right)=2\left(q+5\right)\left(2q+15\right)⋮2\)
Suy ra đpcm
\(b,\) Với n chẵn \(\Rightarrow n=2k\Rightarrow n\left(n+1\right)\left(2n+1\right)⋮2\)
Với n lẻ \(\Rightarrow n=2q+1\Rightarrow n+1=2q+2=2\left(q+1\right)⋮2\Rightarrow n\left(n+1\right)\left(2n+1\right)⋮2\)
Vậy \(n\left(n+1\right)\left(2n+1\right)⋮2\)
Với \(n=3k\Rightarrow n\left(n+1\right)\left(2n+1\right)⋮3\)
Với \(n=3k+1\Rightarrow2n+1=6k+3=3\left(2k+1\right)⋮3\Rightarrow n\left(n+1\right)\left(2n+1\right)⋮3\)
Với \(n=3k+2\Rightarrow n+1=3\left(k+1\right)⋮3\Rightarrow n\left(n+1\right)\left(2n+1\right)⋮3\)
Vậy \(n\left(n+1\right)\left(2n+1\right)⋮3\)
Suy ra đpcm
chứng minh A=10^n+18n-1 chia hết cho 27 ( 2 thuộc N)
........................................................................