Những câu hỏi liên quan
titanic
Xem chi tiết
Full Moon
3 tháng 11 2018 lúc 19:22

Đặt x = a + b; y = ab thì: 
BĐt  tương đương:

\(x^2-2y+\frac{\left(1+y\right)^2}{x^2}\ge2\)

\(\Leftrightarrow x^2\left(x^2-2y\right)+\left(1+y\right)^2-2x^2\ge0\)

\(\Leftrightarrow x^4-2x^2y+y^2+2y+1-2x^2\ge0\)

\(\Leftrightarrow\left(x^2-y-1\right)^2\ge0\left(lđ\right)\)

Đến đây bạn tự kết luận nha

Kiệt Nguyễn
13 tháng 4 2020 lúc 14:20

Ta có phép biến đổi tương đương:

\(a^2+b^2+\frac{\left(ab+1\right)^2}{\left(a+b\right)^2}\ge2\Leftrightarrow\frac{\left(a+b\right)^2\left(a^2+b^2\right)+\left(ab+1\right)^2}{\left(a+b\right)^2}\ge2\)

\(\Leftrightarrow\left(a+b\right)^2\left(a^2+b^2\right)+\left(ab+1\right)^2\ge2\left(a+b\right)^2\)

\(\Leftrightarrow\left(a+b\right)^2\left[\left(a+b\right)^2-2ab\right]-2\left(a+b\right)^2+\left(ab+1\right)^2\ge0\)

\(\Leftrightarrow\left(a+b\right)^4-2ab\left(a+b\right)^2-2\left(a+b\right)^2+\left(ab+1\right)^2\ge0\)

\(\Leftrightarrow\left(a+b\right)^4-2\left(a+b\right)^2\left(ab+1\right)+\left(ab+1\right)^2\ge0\)

\(\Leftrightarrow\left[\left(a+b\right)^2-ab-1\right]^2\ge0\)(đúng với mọi a,b)

Các bđt trên tương đương với nhau nên bđt cần chứng minh đúng

Vậy \(a^2+b^2+\frac{\left(ab+1\right)^2}{\left(a+b\right)^2}\ge2\)

Khách vãng lai đã xóa
Sida
Xem chi tiết
Lightning Farron
11 tháng 9 2016 lúc 13:32

Vì vai trò a,b,c như nhau nên ta giả sử

\(a\ge b\ge c>0\)

Ta có: \(2b\left(a+c\right)^2-\left(a+b\right)\left(b+c\right)\left(c+a\right)=\left(a+c\right)\left(a-b\right)\left(b-c\right)\ge0\)

\(\Rightarrow2b\left(a+c\right)^2\ge\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

Khi đó:

\(\frac{a^2+b^2+c^2}{ab+bc+ca}+\frac{8abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)\(\ge\frac{a^2+b^2+c^2}{ab+bc+ca}+\frac{4ac}{\left(a+c\right)^2}\) (1)

Mà \(\frac{a^2+b^2+c^2}{ab+bc+ca}+\frac{4ac}{\left(a+c\right)^2}-2=\frac{\left(a^2+c^2-ab-bc\right)^2}{\left(a+c\right)^2\left(ab+bc+ca\right)}\ge0\) (2)

Từ (1) và (2) =>Đpcm

 

Hoàng Lê Bảo Ngọc
11 tháng 9 2016 lúc 16:08

Ta dễ dàng chứng minh được  \(a^2+b^2+c^2\ge ab+bc+ac\)

\(\Rightarrow\frac{a^2+b^2+c^2}{ab+bc+ac}\ge1\Rightarrow\frac{a^2+b^2+c^2}{ab+bc+ac}\ge\frac{a^2+b^2+c^2+a^2}{ab+bc+ac+a^2}=\frac{2a^2+b^2+c^2}{\left(a+c\right)\left(a+b\right)}\)

Suy ra cần chứng minh \(\frac{2a^2+b^2+c^2}{\left(a+b\right)\left(a+c\right)}+\frac{8abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge2\)

Điều này tương đương với \(\left(b+c\right)\left(2a^2+b^2+c^2\right)+8abc\ge2\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

\(\Leftrightarrow2a^2b+2a^2c+b^3+b^2c+c^2b+c^3+8abc\ge2\left(2abc+a^2b+ac^2+a^2c+b^2c+b^2a+bc^2\right)\)

\(\Leftrightarrow\left(b^2-2bc+c^2\right)\left(b+c-2a\right)\ge0\Leftrightarrow\left(b-c\right)^2\left(b+c-2a\right)\ge0\) (luôn đúng)

Vậy bđt ban đầu được chứng minh

 

zZz Cool Kid_new zZz
Xem chi tiết
Tran Le Khanh Linh
1 tháng 9 2020 lúc 19:58

Chắc áp dụng BĐT AM-GM á

Khách vãng lai đã xóa
tth_new
2 tháng 9 2020 lúc 7:43

Bất đẳng thức sau đây đúng với mọi a, b, c không âm:

\(\left(ab+bc+ca\right)\left[\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\right]\ge\frac{49}{18}+k\left(\frac{a}{b+c}-2\right)\)

với \(k=\frac{23}{25}\).

Note. \(k_{\text{max}}\approx\text{0.92102588865167}\) là nghiệm của phương trình bậc 5: 

15116544*k^5+107495424*k^4-373143024*k^3+280903464*k^2+209797812*k-227353091 = 0

Khách vãng lai đã xóa
Nguyễn Thanh Hiền
Xem chi tiết
kudo shinichi
5 tháng 5 2019 lúc 10:39

Đặt \(\frac{a}{b}=x\Rightarrow\frac{b}{a}=\frac{1}{x}\)

\(\Rightarrow x^2+\frac{1}{x^2}-1>2\left(x-\frac{1}{x}\right)\)

\(\Leftrightarrow\frac{x^4-2x^3-x^2+2x+1}{x^2}>0\)

\(\Leftrightarrow x^3\left(x-2\right)-x\left(x-2\right)+1>0\)

\(\Leftrightarrow x\left(x-2\right)\left(x-1\right)\left(x+1\right)+1>0\)

Có: \(\left(x-2\right)\left(x-1\right)x\left(x+1\right)\)là tích của 4 số tự nhiên liên tiếp ta có:

\(\Rightarrow x\left(x-2\right)\left(x-1\right)\left(x+1\right)\ge0\)

\(\Rightarrow x\left(x-2\right)\left(x-1\right)\left(x+1\right)+1\ge1>0\)

Đúng không ta?

kudo shinichi
5 tháng 5 2019 lúc 10:58

Sửa từ dòng số 6:

\(\Leftrightarrow\)\(\left(x^2-x-2\right)\left(x^2-x\right)+1\ge0\)

Đặt \(x^2-x=t\)

\(\Rightarrow\left(t-2\right)t+1\ge0\)

\(\Leftrightarrow t^2-2t+1\ge0\)

\(\Leftrightarrow\left(t-1\right)^2\ge0\)( luôn đúng )

Dấu " = " xảy ra khi ........................

Le Duc Anh
Xem chi tiết
Tú Đỗ
19 tháng 3 2017 lúc 16:08

ta chứng minh đưk a2+b2 >= 2ab. 

Tú Đỗ
19 tháng 3 2017 lúc 16:12

ta chứng minh đưk a2+b2 >= 2ab. Ta có:

a2+b2 + (ab+1/a+b)2  = (a+b)2 + (ab+1/a+b)2 - 2ab >= 2(ab+1) - 2ab = 2ab + 2 - 2ab = 2

Vậy.......

huong dan
Xem chi tiết
Hà Lê
Xem chi tiết
Thắng Nguyễn
9 tháng 7 2017 lúc 17:24

Lần sau đăng ít 1 thôi đăng nhiều ngại làm, bn đăng nhiều nên tui hướng dẫn sơ qua thôi tự làm đầy đủ vào vở

Bài 1:

Áp dụng BĐT AM-GM ta có:

\(a^4+b^4\ge2a^2b^2;b^4+c^4\ge2b^2c^2;c^4+a^4\ge2c^2a^2\)

Cộng theo vế 3 BĐT trên rồi thu gọn

\(a^4+b^4+c^4\ge a^2b^2+b^2c^2+c^2a^2\)

Áp dụng tiếp BĐT AM-GM

\(a^2b^2+b^2c^2=b^2\left(a^2+c^2\right)\ge2b^2ac\)

Tương tự rồi cộng theo vế có ĐPCM

Bài 2:

Quy đồng  BĐT trên ta có:

\(\frac{a^2}{b^2}+\frac{b^2}{a^2}-\frac{a}{b}-\frac{b}{a}\ge0\)

\(\Leftrightarrow\frac{\left(a-b\right)^2\left(a^2+ab+b^2\right)}{a^2b^2}\ge0\) (luôn đúng)

Bài 4: Áp dụng BĐT AM-GM 

\(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)

\(\ge\left(a+b\right)\left(2ab-ab\right)=ab\left(a+b\right)\)

\(\Rightarrow\frac{a^3+b^3}{ab}\ge\frac{ab\left(a+b\right)}{ab}=a+b\)

Tương tự rồi cộng theo vế

Bài 5: sai đề tự nhien có dấu - :v nghĩ là +

Game Master VN
9 tháng 7 2017 lúc 9:54

ai k mình k lại [ chỉ 3 người đầu tiên mà trên 10 điểm hỏi đáp ]

 
tth_new
Xem chi tiết
Nguyễn Huy Hoàng
4 tháng 1 2020 lúc 9:40

hack hay sao

Khách vãng lai đã xóa
Nguyễn Huy Hoàng
4 tháng 1 2020 lúc 9:40

chứng minh ngắn là làm tắt

Khách vãng lai đã xóa
tth_new
4 tháng 1 2020 lúc 9:43

Nguyễn Huy Hoàng thế you làm tắt xem có được 2-3 dòng không:) 

Khách vãng lai đã xóa
Phạm Bá Tâm
Xem chi tiết
Nguyễn Đăng Nhân
18 tháng 2 2022 lúc 10:02

Ta có:

\(\frac{a\left(b+c\right)}{b^2+bc+c^2}=\frac{a\left(b+c\right)\left(ab+bc+ca\right)}{\left(b^2+bc+c^2\right)\left(ab+bc+ca\right)}\)

\(\ge\frac{4a\left(b+c\right)\left(ab+bc+ca\right)}{\left(b^2+bc+c^2+ab+bc+ca\right)^2}=\frac{4a\left(ab+bc+ca\right)}{\left(b+c\right)\left(a+b+c\right)^2}\)

Tương tự ta được:

\(\frac{a\left(b+c\right)}{b^2+bc+c^2}+\frac{b\left(c+a\right)}{c^2+ca+a^2}+\frac{c\left(a+b\right)}{a^2+ab+b^2}\)

\(\ge\frac{4a\left(ab+bc+ca\right)}{\left(b+c\right)\left(a+b+c\right)^2}+\frac{4b\left(ab+bc+ca\right)}{\left(c+a\right)\left(a+b+c\right)^2}+\frac{4c\left(ab+bc+ca\right)}{\left(a+b\right)\left(a+b+c\right)^2}\)

Vậy ta cần chứng minh:

\(\frac{4a\left(ab+bc+ca\right)}{\left(b+c\right)\left(a+b+c\right)^2}+\frac{4b\left(ab+bc+ca\right)}{\left(c+a\right)\left(a+b+c\right)^2}+\frac{4c\left(ab+bc+ca\right)}{\left(a+b\right)\left(a+b+c\right)^2}\ge2\)

Ta viết lại bất đẳng thức trên thành:

\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\)

Đánh giá trên đúng theo bất đẳng thức Bunhiacopxki dạng phân thức. Vậy bất đẳng thức đã được chứng minh.

Khách vãng lai đã xóa