Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Minh Trang
Xem chi tiết
pham huu huy
Xem chi tiết
nguyen ngoc song thuy
Xem chi tiết
Thái Ngọc Trâm Anh
Xem chi tiết
Nguyệt
28 tháng 1 2019 lúc 16:34

thay xyz=2017, ta có:

\(D=\frac{xyzx}{xy+xyzx+xyz}+\frac{y}{yz+y+xzy}+\frac{z}{xz+z+1}\)

\(D=\frac{xz}{1+xz+z}+\frac{1}{x+1+xz}+\frac{z}{xz+x+1}=1\)

\(\text{Bài làm }\)

\(\text{ Gọi xyz = 2017}\)

\(\text{Ta có:}\) \(D=\frac{xyzx}{xy+xyzx+xyz}+\frac{y}{yz+y+xzy}+\frac{z}{xz+z+1}\)

           \(D=\frac{xz}{1+xz+z}+\frac{1}{x+1+xz}+\frac{z}{xz+x+1}=1\)

\(\text{# Chúc bạn học tốt #}\)

Nguyệt
28 tháng 1 2019 lúc 16:47

@bn Thần chết:

đề bài cho xyz=2017 rồi nên ko được gọi nữa nhé

trần thành đạt
Xem chi tiết
Nguyễn Thị Ngọc Ánh
Xem chi tiết
PK
Xem chi tiết
Trần Văn Đinh Sang
3 tháng 1 2017 lúc 8:33

bài 1

ab+bc+ca=0

=>ab+bc=-ca

ta có (a+b)(b+c)(c+a)/abc

=> (ab+ac+bc+b2)(c+a)/abc

=> (0+b2)(c+a)/abc

=>b2c+b2a/abc

=>b(ab+bc)/abc

=>b(-ac)/abc

=>-abc/abc=-1

phạm kim liên
Xem chi tiết
Edogawa Conan
16 tháng 8 2021 lúc 16:49

Ta có:\(\sqrt{\dfrac{yz}{x^2+2017}}=\sqrt{\dfrac{yz}{x^2+xy+yz+zx}}=\sqrt{\dfrac{yz}{\left(x+y\right)\left(x+z\right)}}\)

  \(=\sqrt{\dfrac{y}{x+y}\cdot\dfrac{z}{x+z}}\le\dfrac{\dfrac{y}{x+y}+\dfrac{z}{x+z}}{2}\)

Tương tự ta có:\(\sqrt{\dfrac{zx}{y^2+2017}}\le\dfrac{\dfrac{x}{x+y}+\dfrac{z}{y+z}}{2}\)

                         \(\sqrt{\dfrac{xy}{z^2+2017}}\le\dfrac{\dfrac{y}{z+y}+\dfrac{x}{x+z}}{2}\)

Cộng vế với vế ta có:

\(\sqrt{\dfrac{yz}{x^2+2017}}+\sqrt{\dfrac{zx}{y^2+2017}}+\sqrt{\dfrac{xy}{z^2+2017}}\)

\(\le\dfrac{\dfrac{y}{x+y}+\dfrac{z}{x+z}+\dfrac{z}{z+y}+\dfrac{x}{x+y}+\dfrac{y}{z+y}+\dfrac{x}{x+z}}{2}\)

\(=\dfrac{\dfrac{x+y}{x+y}+\dfrac{y+z}{y+z}+\dfrac{z+x}{z+x}}{2}=\dfrac{1+1+1}{2}=\dfrac{3}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\dfrac{\sqrt{2017}}{\sqrt{3}}\)

Nguyễn Tất Đạt
Xem chi tiết
alibaba nguyễn
4 tháng 10 2017 lúc 8:09

Ta có:

\(\left(x+y+z\right)\left(xy+yz+zx\right)=xyz\)

\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)

\(\Leftrightarrow x=-y;y=-z;z=-x\)

Với \(x=-y\)

\(\Rightarrow x^{2017}+y^{2017}+z^{2017}=z^{2017}=\left(x+y+z\right)^{2017}\)

Tương tự cho 2 trường hợp còn lại