Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Phúc
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
Xem chi tiết
alibaba nguyễn
31 tháng 3 2021 lúc 13:53

Đề phải là số thực không âm mới đúng

Khách vãng lai đã xóa
doraemon
Xem chi tiết
Lê Song Phương
4 tháng 2 2022 lúc 7:16

Từ bất đẳng thức luôn đúng \(\left(a-b\right)^2\ge0\)\(\Leftrightarrow a^2-2ab+b^2\ge0\)\(\Leftrightarrow a^2+b^2\ge2ab\)\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)(*)

Vì a, b là các số thực dương nên nhân cả 2 vế của (*) cho \(\frac{1}{ab\left(a+b\right)}\), ta có:

\(\frac{\left(a+b\right)^2}{ab\left(a+b\right)}\ge\frac{4}{ab\left(a+b\right)}\)\(\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)\(\Leftrightarrow P\ge\frac{4}{a+b}\)
Lại có \(a+b\le2\sqrt{2}\)\(\Leftrightarrow\frac{4}{a+b}\ge\frac{4}{2\sqrt{2}}=\sqrt{2}\)

Từ đó ta có \(P\ge\sqrt{2}\)

Dấu "=" xảy ra khi \(a=b=\sqrt{2}\)

Khách vãng lai đã xóa
Vũ Ngọc Diệp
Xem chi tiết
Tran Le Khanh Linh
24 tháng 7 2020 lúc 16:14

ta có \(\frac{2+a}{1+b}+\frac{1-2b}{1+2b}=\frac{1+a+1}{1+a}+\frac{2-\left(1+2b\right)}{1+2b}=\frac{1}{1+a}+\frac{2}{1+2b}\)

sử dụng bất đẳng thức Cauchy-Schwwarz ta có:

\(\frac{1}{1+a}+\frac{2}{1+2b}=\frac{1}{1+a}+\frac{1}{\frac{1}{2}+b}\ge\frac{4}{1+a+\frac{1}{2}+b}\ge\frac{4}{1+\frac{1}{2}+2}=\frac{8}{7}\)do a+b =<2

dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a+b=2\\1+a=\frac{1}{2}+b\end{cases}\Leftrightarrow\hept{\begin{cases}a=\frac{3}{4}\\b=\frac{5}{4}\end{cases}}}\)

Khách vãng lai đã xóa
Đoàn Thanh Bảo An
Xem chi tiết
Nguyễn Long Vượng
Xem chi tiết
Diệp Nguyễn Thị Huyền
Xem chi tiết
team5a
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 12 2020 lúc 22:25

Ta có: \(\left(a^{100}+b^{100}\right)\cdot ab=a^{101}\cdot b+b^{101}\cdot a\)

\(\left(a^{101}+b^{101}\right)\cdot\left(a+b\right)=a^{102}+a^{101}\cdot b+b^{101}\cdot a+b^{102}\)

Do đó: \(\left(a^{101}+b^{101}\right)\left(a+b\right)-\left(a^{100}+b^{100}\right)\cdot ab\)

\(=a^{102}+b\cdot a^{101}+a\cdot b^{101}+b^{102}-a^{101}\cdot b-b^{101}\cdot a\)

\(=a^{102}+b^{102}\)

Kết hợp đề bài, ta có: 

\(\left(a^{102}+b^{102}\right)\left(a+b\right)-\left(a^{102}+b^{102}\right)\cdot ab=a^{102}+b^{102}\)

\(\Leftrightarrow a+b-ab=1\)

\(\Leftrightarrow a+b-ab-1=0\)

\(\Leftrightarrow\left(a-1\right)+b\left(1-a\right)=0\)

\(\Leftrightarrow\left(a-1\right)-b\left(a-1\right)=0\)

\(\Leftrightarrow\left(a-1\right)\left(1-b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a-1=0\\1-b=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=1\\b=1\end{matrix}\right.\)

Vậy: \(P=a^{2004}+b^{2004}=1^{2004}+1^{2004}=2\)

khong có
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 4 2021 lúc 23:16

Ta chứng minh BĐT phụ sau:

\(\dfrac{a^3}{a^2+b^2}\ge\dfrac{2a-b}{2}\)

Thật vậy, BĐT tương đương:

\(2a^3-\left(2a-b\right)\left(a^2+b^2\right)\ge0\)

\(\Leftrightarrow b\left(a-b\right)^2\ge0\) (luôn đúng với a;b dương)

Tương tự: \(\dfrac{b^3}{b^3+c^3}\ge\dfrac{2b-c}{2}\) ; \(\dfrac{c^3}{c^3+a^3}\ge\dfrac{2c-a}{2}\)

Cộng vế với vế:

\(VT\ge\dfrac{a+b+c}{2}=3\) (đpcm)