cho tam giác ABC vuông tại A và AB=6 cm , AC = 8 cm , AH vuông góc BC tại H . Tính AH, HB, HC
cho tam giác abc vuông tại a, ah vuông góc với bc tại h. tính bc, ah, ac biết ab = 4 cm, hb = 2cm, hc = 8 cm
Cho tam giác ABC vuông tại A có BC bằng 6 cm AC bằng 8 cm Kẻ đường cao AH a,Chứng minh tam giác ABC đồng dạng với tam giác hba chứng minh ah² = HB nhân HC tính độ dài của BC ah phân giác của góc ACB cắt ah tại E cắt d cắt AB tại D tính tỉ số diện tích của tam giác acd và tam giác hce
a: Xet ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
b: ΔBCA vuông tại A có AH vuông góc BC
nên AH^2=HB*CH
c: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
AH=6*8/10=4,8cm
Cho tam giác ABC cân tại A có AB = AC = 5 cm, BC = 8 cm, Kẻ AH vuông góc với BC (H thuộc BC) Chứng minh: a) HB = HC và góc BAH bằng góc CAH. b) Tính độ dài AH. c) kẻ HD vuông góc với AB, HE vuông góc với AC (D thuộc AB, E thuộc AC).Chứng minh tam giác HDE cân
a, Xét \(\Delta ABH\) và\(\Delta ACH\) CÓ:
\(AHchung\)
AB = AC
\(\widehat{AHB}=\widehat{AHC}\)
\(\Rightarrow\Delta ABH=\Delta ACH\)(cạnh huyền cạnh góc vuông)
=> BH = HC ( 2 cạnh tương ứng )
b,Do BC = 8cm => BH = 4cm
Áp dụng định lý Py ta go vào tam giác vuông ABH có :
\(AH^2+BH^2=AB^2\)
\(\Rightarrow AH^2=AB^2-BH^2\)\(\Rightarrow AH^2=5^2-4^2=25-16=9\)\(\Rightarrow AH=3\left(cm\right)\)
c,\(Xét\Delta DBH\) và\(\Delta ECH\) có :
\(\widehat{ABH}=\widehat{ACH}\)
BH = HC
\(\widehat{BDH}=\widehat{CEH}\)
\(\Rightarrow\Delta DBH=\Delta ECH\)\(\Rightarrow DH=EH\)=> \(\Delta DHE\) cân tại H
cho mình 1 tym nha
cho tam giác abc vuông tại a, ah vuông góc với bc tại h. tính độ dài các cạnh của tam giác abc biết ah = 4 cm, hb = 2cm, hc = 8 cm
+) +) Xét Δ ABH vuông tại H
\(\Rightarrow AB^2=AH^2+BH^2\) ( định lí Py-ta-go )
\(\Rightarrow AB^2=4^2+2^2\)
\(\Rightarrow AB^2=16+4=20\)
\(\Rightarrow AB=\sqrt{20}\) ( do AB > 0 )
+) Xét Δ AHC vuông tại H
\(\Rightarrow AC^2=AH^2+HC^2\) ( định lí Py-ta-go)
\(\Rightarrow AC^2=4^2+8^2\)
\(\Rightarrow AC^2=16+64=80\)
\(\Rightarrow AC=\sqrt{80}\) ( do AC > 0 )
+) Ta có \(AH\perp BC\) tại H
\(\Rightarrow H\in BC\)
\(\Rightarrow\) HB + HC = BC
=> BC = 2 + 8 = 10 ( cm)
Vậy ...
@@ Học tốt
Đề bài nó cho số k đẹp hay là t tính sai nhỉ ?
cảm ơn bạn nha mình k cho bạn 3 k rồi đó
Cho tam giác ABC vuông tại A đường cao AH Tính độ dài AB , AC biết HB = 4,5 cm và HC = 8 cm BC = 13 cm và HB - HC = 5 cm BC = 25 cm và HP/HC = 3/2 cm
a: AB=căn 4,5*12,5=7,5cm
AC=căn 8*12,5=10cm
b: HB=(13+5)/2=9cm
HC=13-9=4cm
AB=căn 9*13=3 căn 13cm
AC=căn 4*13=2căn 13cm
cho tam giác ABC vuông tại A .kẻ AH vuông góc với BC . biết HB = 9cm,HC =16 cm;AC=5cm . tính AH;AB
TA CÓ BH + HC = BC
=> BC = 9+16=25
THEO ĐỊNH LÝ PITAGO XÉT \(\Delta ABC\)VUÔNG TẠI A CÓ
\(BC^2=AB^2+AC^2\)
\(AB^2=BC^2-AC^2\)
\(AB^2=25^2-5^2\)
......
AH TƯƠNG TỰ
Cho tam giác ABC vuông tại A có AB=6 cm ; AC= 8cm
a) Tính độ dài đoạn BC .
b) Vẽ AH vuông góc BC tại H . Trên HC lấy D sao cho HD= HB . Chứng minh AB =AD .
c) Trên tia đối của tia HA lấy điểm E sao cho EH= AH . Chứng minh ED vuông góc AC
Áp dụng định lý pitago vào tam giác vuông ABC, có:
\(BC^2=AB^2+AC^2\)
\(\Rightarrow BC=\sqrt{6^2+8^2}=\sqrt{100}=10cm\)
b.Xét tam giác vuông ABH và tam giác vuông ADH, có:
HD = HB ( gt )
AH: cạnh chung
Vậy tam giác vuông ABH = tam giác vuông ADH ( 2 cạnh góc vuông )
=> AB = AD ( 2 cạnh tương ứng )
Cho tam giác ABC vuông tại A. Kẻ AH vuông góc với BC( H thuộc BC). Tính độ dài AH biết HB=2 cm, HC=8 cm
cho tam giác ABC vuông tại A ,AB=9 cm ;AC=12 cm ;BC=15cm ; AH=7,2cm ; HC=5,4cm ; HB =9,6 cm . Đường cao AH .Cho tia phân giác của góc BAC cắt BC tại A .Tính BD và CD