Cho a,b,c > 0 thoả mãn a+b+c=1. Chứng minh >>>>> http://i.imgur.com/B7n0Igp.png
Cho a,b,c > 0 thoả mãn a+b+c=1. Chứng minh >>>>> https://i.imgur.com/B7n0Igp.png
P/s : mn truy cập link để xem đề bài nha vì nó khá phức tập :P
Cho ba số thực a,b,c khác 0 thoả mãn a(1/b+1/c)+ b(1/c+1/a)+ c(1/a+1/c)= -2. Chứng minh rằng (a+b)(b+c)(c+a)=0
Cho 0<a<1; 0<b<1; 0<c<1 thoả mãn a+b+c = 2, chứng minh: a^2 + b^2 + c^2 < 2
a2 + b2 + c2 < 2
<=> a2 + b2 + c2 < a+ b + c
<=> (a2 - a )+ (b2 - b )+ (c2 - c) < 0
<=> a.(a - 1) + b.(b -1) + c.(c -1) < 0 (*)
Điều này luôn đúng với mọi 0<a<1; 0<b<1; 0<c<1 vì 0<a<1 => a- 1 < 0 => a.(a-1) < 0
tương tự b(b - 1) < 0; c(c -1) < 0
Vậy (*) => đpcm
cho a,b,c>0 thoả mãn a+b+c=1
chứng minh rằng √(a+bc) +√(b+ca) +√(c+ab)≥1+√bc+√ca+√ab
cho a,b,c>0 thoả mãn a+b+c=1
chứng minh rằng √(a+bc) +√(b+ca) +√(c+ab)≥1+√bc+√ca+√ab
Ta chứng minh:\(\sqrt{a+bc}\ge a+\sqrt{bc}\)
\(\Leftrightarrow a+bc\ge a^2+bc+2a\sqrt{bc}\)
\(\Leftrightarrow a\ge a^2+2a\sqrt{bc}\)\(\Leftrightarrow a\ge a\left(a+2\sqrt{bc}\right)\Leftrightarrow1\ge a+2\sqrt{bc}\Leftrightarrow a+b+c\ge a+2\sqrt{bc}\)
\(\Leftrightarrow b+c-2\sqrt{bc}\ge0\Leftrightarrow\left(\sqrt{b}-\sqrt{c}\right)^2\ge0\)(luôn đúng)
\(\Leftrightarrow\sqrt{a+bc}\ge a+\sqrt{bc}\)
CMTT\(\sqrt{b+ca}\ge b+\sqrt{ca}\)
\(\sqrt{c+ab}\ge c+\sqrt{ab}\)
\(\Leftrightarrow\sqrt{a+bc}+\sqrt{b+ca}+\sqrt{c+ab}\ge a+b+c+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=1+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)Vậy ......
(Dấu = xảy ra (=) a=b=c=1/3
: Cho a,b,c R và a,b,c 0 thoả mãn b2 = ac. Chứng minh rằng:
=
Cho a,b,c>0 thoả mãn 1/a+1/b +1/c =4. Chứng minh 1/(2a+b+c ) + 1/(a+2b+c ) +1/(a+b+2c) =< 1
cái này bạn dùng bất đẳng thức \(\frac{a^2}{x}+\frac{b^2}{y}>=\frac{\left(a+b\right)^2}{x+y}\)2 lần với từng phân thức. rồi cộng vế theo vế là xong
cho a,b,c là thoả mãn 2a+b+c=0 chứng minh 2a^2 +b^2 +c^2=3a(a+b)(c-b)