Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Le thi lenda
Xem chi tiết
Minh Nhân
18 tháng 6 2021 lúc 10:41

Bấm máy tính cho lẹ em ơi :))

Lê Ng Hải Anh
18 tháng 6 2021 lúc 10:59

Thực ra thì em vẫn nên sử dụng máy tính là tốt nhất vì với môn hóa thì quá trình giải hệ phương trình không quan trọng. Hơn nữa lên lớp 9 em cũng sẽ được học chi tiết cách giải hệ phương trình trong môn toán nhé!

\(\left\{{}\begin{matrix}24x+27y=6,45\\x+\dfrac{3}{2}y=0,325\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}24x+27y=6,45\\x=0,325-\dfrac{3}{2}y\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}24\left(0,325-\dfrac{3}{2}y\right)+27y=6,45\\x=0,325-\dfrac{3}{2}y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}7,8-36y+27y=6,45\\x=0,325-\dfrac{3}{2}y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=0,15\left(mol\right)\\x=0,325-\dfrac{3}{2}.0,15=0,1\left(mol\right)\end{matrix}\right.\)

 

 

 

 

Lê Trúc Anh _
Xem chi tiết
An Hoài Nguyễn
Xem chi tiết
Phan Vân
Xem chi tiết
Phan Vân
Xem chi tiết
Phan Thành Tiến
28 tháng 3 2018 lúc 10:50

huhuhu phân tích cả buổi chả đc tí j

Phan Thành Tiến
28 tháng 3 2018 lúc 10:54

chừng có ai trả lời đc báo mình với nha

Phan Vân
28 tháng 3 2018 lúc 21:48

Bạn giải được thì giải giúp mình với nhé

Phan Vân
Xem chi tiết
Namiru Ikiou
Xem chi tiết
Hạ Lê Vân Khánh
Xem chi tiết
Đặng Công Minh Nghĩa
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 3 2022 lúc 17:05

\(\dfrac{3x^2}{2}+y^2+z^2+yz=1\)

\(\Leftrightarrow\dfrac{3}{2}x^2+\left(y+\dfrac{z}{2}\right)^2+\dfrac{3z^2}{4}=1\)

Áp dụng BĐT Bunhiacopxki:

\(\left(\dfrac{2}{3}+1+\dfrac{1}{3}\right)\left(\dfrac{3}{2}x^2+\left(y+\dfrac{z}{2}\right)^2+\dfrac{3z^2}{4}\right)\ge\left(\sqrt{\dfrac{2}{3}.\dfrac{3}{2}x^2}+\sqrt{1.\left(y+\dfrac{z}{2}\right)^2}+\sqrt{\dfrac{1}{3}.\dfrac{3z^2}{4}}\right)^2\)

\(\Leftrightarrow2.1\ge\left(x+y+\dfrac{z}{2}+\dfrac{z}{2}\right)^2=\left(x+y+z\right)^2\)

\(\Rightarrow-\sqrt{2}\le x+y+z\le\sqrt{2}\)

alibaba nguyễn
22 tháng 3 2022 lúc 18:10

\(\frac{3x^2}{2}+y^2+z^2+yz=1\)

\(\Leftrightarrow3x^2+2y^2+2z^2+2yz=2\)

\(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2yz+2zx\right)+\left(x^2-2xy+y^2\right)+\left(x^2-2xz+z^2\right)=2\)

\(\Leftrightarrow\left(x+y+z\right)^2+\left(x-y\right)^2+\left(x-z\right)^2=2\)

\(\Rightarrow\left(x+y+z\right)^2\le2\)

\(\Leftrightarrow-\sqrt{2}\le x+y+z\le\sqrt{2}\)

Khách vãng lai đã xóa
Đỗ Hưng Thịnh
22 tháng 3 2022 lúc 16:48

em chịu