Chứng minh rằng nếu a,b,c > 0 thoả mãn a+b+c = 3 thì ab+a 3b2+10b+3 + bc+b 3c2+10c+3 + ca+c 3a2+10a+3 ≥
3 8
Cho a,b,c là các số dương thoả mãn √ a + √ b + √ c = √ 2022
a)Tìm giá trị của biểu thức A=xnxn + 1xn1xn biết x2 +x+1=0
b) Rút gọn biểu thức: N=x|x−2|x2+8x−20+12x−3x|x−2|x2+8x−20+12x−3
c)Tìm x,y biết: x2+y2+1x2+1y2=4x2+y2+1x2+1y2=4
d)Trong 3 số x,y,z có 1 số dương,1 số âm và 1 số 0. Hỏi mỗi số đó thuộc loại nào biết: |x|=y3−y2zy3−y2z
e)Cho a là số gồm 2n chữ số 1, b là số gồm n+1 chữ số 1 , c là số gồm n chữ số 6. CMR a+b+c+8 là số chính phương
g)Tìm số nguyên dương a,b,c thỏa mãn: a3+3a2+5=5ba3+3a2+5=5b và a+3=5^{c}
Xét a,b là các số thực thỏa mãn:
1. a3 + a = 3 và b3 + b = 3. Chứng minh rằng a=b.
2. a3+ 3a2+ 4a - 2 =0 và b3- 3b2 + 4b - 7 =0. Tính a + b ?
10:591. b3+b= 3
(b3+b)=3
b.(3+1)=3
b. 4= 3
b=\(\dfrac{3}{4}\)
a3+a= 3 b3
(a3+a)=3
a.(3+1)=3
a. 4= 3
a=\(\dfrac{3}{4}\)
2
1. Cho a, b là hai hằng số với | a |> 0. Nếu phương trình || x-a | -b | = 3 có ba nghiệm phân biệt x, hãy tìm giá trị của b
2. Cho a = 2009. Tìm giá trị của | 2a3-3a2-2a + 1 | + | 2a3-3a2-3a-2009 |
Viết số thích hợp vào chỗ chấm :
Dưới đây là bảng thống kê số học sinh của các lớp khối 3 trường Tiểu học Đoàn Kết :
Lớp | 3A1 | 3A2 | 3A3 | 3A4 | 3A5 |
Học sinh | 35 | 34 | 34 | 35 | 33 |
a) Lớp 3A1 có .... học sinh ; lớp 3A2 có .... học sinh.
b) Lớp 3A4 có nhiều hơn lớp 3A5 .... học sinh.
c) Tổng số học sinh của 5 lớp khối 3 là .... học sinh.
a) Lớp 3A1 có 35 học sinh ; lớp 3A2 có 34 học sinh.
b) Lớp 3A4 có nhiều hơn lớp 3A5 2 học sinh.
c) Tổng số học sinh của 5 lớp khối 3 là 171 học sinh.
Bài 1: số trong lớp không lớn hơn 30 hỏi có thể là bao nhiêu biết rằng khi xếp hàng 3 thì dư 2 bàn khi xếp hàng 5 thì dư 1 bàn
Bài 2:Tìm số tự nhiên a nhỏ nhất biết rằng số đó chia cho 3,4,5 dư 1 và chia hết cho 11
Bài 3: Tìm số tự nhiên a và b a<b biết rằng BCNN(a,b)+ƯCLN(a,b)=19 BCNN(a,b)-ƯCLN(a,b)=3
Bài 4: Tìm số tự nhiên a,b,c biết 16a=25b=30c. a,b,c là các số tự nhiên nhỏ nhất khác 0
1. So sánh các số a, b và c, biết rằng a/b = b/c = c/a.
2. Tìm các số a, b, c, d, biết rằng:
a : b : c : d = 2 : 3 : 4 : 5 và a + b + c + d = -42.
3. Tìm các số a, b, c, biết rằng:
a/2 = b/3 , b/5 = c/4 và a - b + c = -49.
4. Tìm các số a, b, c, biết rằng:
a/2 = b/3 = c/4 và a + 2b - 3c = -20.
2.Giải:
Theo bài ra ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}\) và a + b + c + d = -42
Theo tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}=\frac{a+b+c+d}{2+3+4+5}=\frac{-42}{14}=-3\)
+) \(\frac{a}{2}=-3\Rightarrow a=-6\)
+) \(\frac{b}{3}=-3\Rightarrow b=-9\)
+) \(\frac{c}{4}=-3\Rightarrow c=-12\)
+) \(\frac{d}{5}=-3\Rightarrow d=-15\)
Vậy a = -6
b = -9
c = -12
d = -15
Bài 3:
Ta có:\(\frac{a}{2}=\frac{b}{3}\Leftrightarrow\frac{a}{10}=\frac{b}{15}\); \(\frac{b}{5}=\frac{c}{4}\Leftrightarrow\frac{b}{15}=\frac{c}{12}\)
\(\Rightarrow\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\)
Áp dụng tc dãy tỉ:
\(\frac{a}{10}=\frac{b}{15}=\frac{c}{20}=\frac{a+b+c}{10+15+12}=\frac{-49}{37}\)
Với \(\frac{a}{10}=\frac{-49}{37}\Rightarrow a=10\cdot\frac{-49}{37}=\frac{-490}{37}\)
Với \(\frac{b}{15}=\frac{-49}{37}\Rightarrow b=15\cdot\frac{-49}{37}=\frac{-735}{37}\)
Với \(\frac{c}{12}=\frac{-49}{37}\Rightarrow c=12\cdot\frac{-49}{37}=\frac{-588}{37}\)
Bài 2:
a : b : c : d = 2 : 3 : 4 : 5 \(\Rightarrow\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}\)
Áp dụng tc dãy tỉ:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}=\frac{a+b+c+d}{2+3+4+5}=\frac{-42}{14}=-3\)
Với \(\frac{a}{2}=-3\Rightarrow a=-6\)
Với \(\frac{b}{3}=-6\Rightarrow b=-18\)
Với \(\frac{c}{4}=-6\Rightarrow c=-24\)
Với \(\frac{d}{5}=-6\Rightarrow d=-30\)