chứng tỏ rằng
(3100 + 9990) chia hết cho 2
Chứng tỏ rằng 31 + 32 + 33 +…+ 399 + 3100 chia hết cho 4.
Đặt A = 3¹ + 3² + 3³ + 3⁴ + ... + 3⁹⁹ + 3¹⁰⁰
= (3¹ + 3²) + (3³ + 3⁴) + ... + (3⁹⁹ + 3¹⁰⁰)
= 3.(1 + 3) + 3³.(1 + 3) + ... + 3⁹⁹.(1 + 3)
= 3.4 + 3³.4 + ... + 3⁹⁹.4
= 4.(3 + 3³ + ... + 3⁹⁹) ⋮ 4
Vậy A ⋮ 4
Chứng tỏ B chia hết cho 160
Với: B = 3 + 32 + 33 + ... + 3100
Lời giải:
$B=3+(32+33+...+3100)$
$=3+\frac{(3100+32).3069}{2}=3+4806054=4806057$ không chia hết cho $160$
Bạn xem lại đề.
Bài 5. Cho B = 30 + 31 + 32 + 33 + .... + 3100. Chứng tỏ B chia hết cho 13
\(B=3^0+3^1+3^2...+3^{100}\)
\(=3^0\times\left(1+3^1+3^2\right)+3^3\times\left(1+3^1+3^2\right)+...+3^{98}\times\left(1+3^1+3^2\right)\)
\(=3^0\times13+3^3\times13+...+3^{98}\times13\)
\(=13\times\left(3^0+3^3+...+3^{98}\right)⋮13\)
Cho A = 31 + 32 + 33 + 34 + ... + 399 + 3100
a) Rút gọn A
b) Chứng tỏ rằng: A chia hết cho 40
a, A = 31 + 32 + 33 + 34 +...+ 399 + 3100
3A = 3(31 + 32 + 33 + 34 +...+ 399 + 3100)
3A = 32 + 33 + 34 + 35 +...+ 3100 + 3101
3A - A = (32 + 33 + 34 + 35 +...+ 3100 + 3101) - (31 + 32 + 33 + 34 +...+ 399 + 3100)
2A = 3101 - 31 = 3101 - 3
A = \(\frac{3^{101}-3}{2}\)
b, A = 31 + 32 + 33 + 34 +...+ 399 + 3100
A = (31 + 32 + 33 + 34) +...+ (397 + 398 + 399 + 3100)
A = (31 + 32 + 33 + 34)) +...+ 396(31 + 32 + 33 + 34)
A = 120 +...+ 396.120
A = 120(1 +...+ 396) chia hết cho 40 (ĐPCM)
Cho A=3+32+33+34+...+3100.Chứng minh rằng A chia hết cho 120.
phải là chứng minh A chia hết cho 121
chứng tỏ rằng : a=10! + 1.3.5...9 chia hết cho 5
chứng tỏ rằng : b=10! + 1.3.5...9 + 2009 chia hết cho 2
chứng tỏ rằng : c= 17^17 + 13^13 chia hết cho 2 và 5
chứng tỏ rằng : d= 17^17 - 13^13 chia hết cho 2 nhưng ko chia hết cho 5
chứng minh
A = 1+3+3^2+3^3+...3^11 chứng tỏ rằng chia hết cho 13
B = 3+4+2^2+2^3+....+2^30 chứng tỏ rằng chia hết cho 11
C = 3^1000-1 chứng tỏ rằng chia hết cho 4
TA CÓ:
A=30+3+32+33+........+311
(30+3+32+33)+....+(38+39+310+311)
3(0+1+3+32)+......+38(0+1+3+32)
3.13+....+38.13 cHIA HẾT CHO 13 NÊN A CHIA HẾT CHO 13( đpcm)
a) chứng tỏ rằng 85 +2 11 chia hết cho 17
b)chứng tỏ rằng 8 7-2 18chia hết cho 14
c) chứng tỏ rằng 79 2+79.11 chia hết cho 30
d)chứng tỏ rằng 69 2-69.5 chia hết cho 32
B=3+3 3+3 5+.....+3 1991. chứng minh rằng B chia hết cho 13 và 41
11 n+2+12 20+1 chia hết cho 133
10 28 +8 chia hết cho 72
a) 85+211=23.5+211=211(24+1)=211.17 chia hết cho 17
chứng tỏ rằng a+b chia hết cho 2
chứng tỏ rằng ab+ba chia hết cho 11
ab=10.a+b
ba=10.b+a
ab+ba=11.a-11.b=11.(a-b)=> ab+ba chia hết cho 11
cái đầu thiếu đề (không có dữ liệu chính)
Ta có: ab + ba = (10a.1b) + (10b.1a)
=> (1b+10b).(1a+10a)
= 11b + 11a
= 11.2.ab chia hết cho 11
=> đpcm