Giải pt:
\(\sqrt{x^2-x}=\sqrt{3-x}\)
Giải PT:
\(\dfrac{x^2+\sqrt{3}}{x+\sqrt{x^2+\sqrt{3}}}+\dfrac{x^2-\sqrt{3}}{x-\sqrt{x^2-\sqrt{3}}}=x\)
a) Giải pt: \(x+2\sqrt{7-x}=2\sqrt{x-1}+\sqrt{-x^2+8x-7}+1\)
b)Giải hệ pt \(\left\{{}\begin{matrix}xy-y^2+2y-x-1=\sqrt{y-1}-\sqrt{x}\\3\sqrt{6-y}+3\sqrt{2x+3y-7}=2x+7\end{matrix}\right.\)
a.
ĐKXĐ: \(1\le x\le7\)
\(\Leftrightarrow x-1-2\sqrt{x-1}+2\sqrt{7-x}-\sqrt{\left(x-1\right)\left(7-x\right)}=0\)
\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x-1}-2\right)-\sqrt{7-x}\left(\sqrt{x-1}-2\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-\sqrt{7-x}\right)\left(\sqrt{x-1}-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=\sqrt{7-x}\\\sqrt{x-1}=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=7-x\\x-1=4\end{matrix}\right.\)
\(\Leftrightarrow...\)
b. ĐKXĐ: ...
Biến đổi pt đầu:
\(x\left(y-1\right)-\left(y-1\right)^2=\sqrt{y-1}-\sqrt{x}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x}=a\ge0\\\sqrt{y-1}=b\ge0\end{matrix}\right.\)
\(\Rightarrow a^2b^2-b^4=b-a\)
\(\Leftrightarrow b^2\left(a+b\right)\left(a-b\right)+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(b^2\left(a+b\right)+1\right)=0\)
\(\Leftrightarrow a=b\)
\(\Leftrightarrow\sqrt{x}=\sqrt{y-1}\Rightarrow y=x+1\)
Thế vào pt dưới:
\(3\sqrt{5-x}+3\sqrt{5x-4}=2x+7\)
\(\Leftrightarrow3\left(x-\sqrt{5x-4}\right)+7-x-3\sqrt{5-x}=0\)
\(\Leftrightarrow\dfrac{3\left(x^2-5x+4\right)}{x+\sqrt{5x-4}}+\dfrac{x^2-5x+4}{7-x+3\sqrt{5-x}}=0\)
\(\Leftrightarrow\left(x^2-5x+4\right)\left(\dfrac{3}{x+\sqrt{5x-4}}+\dfrac{1}{7-x+3\sqrt{5-x}}\right)=0\)
\(\Leftrightarrow...\)
Giải pt:
\(\sqrt{x^2-3x+2}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{x^2+2x-3}\)
`ĐK:x>=2`
`pt<=>sqrt{(x-1)(x-2)}+sqrt{x+3}=sqrt{x-2}+sqrt{(x-1)(x+3)}`
`<=>sqrt{x-1}(sqrt{x-2}-sqrt{x+3})-(sqrt{x-2}-sqrt{x+3})=0`
`<=>(sqrt{x-2}-sqrt{x+3})(sqrt{x-1}-1)=0`
`+)sqrt{x-2}=sqrt{x+3}`
`<=>x-2=x+3`
`<=>0=5` vô lý
`+)sqrt{x-1}-1=0`
`<=>x-1=1`
`<=>x=2(tm)`.
Vậy `x=2`.
1)giải pt: 1+\(\dfrac{2}{3}\sqrt{x-x^2}=\sqrt{x}+\sqrt{1-x}\)
2)giải pt: \(\dfrac{x^2}{\sqrt{3x-2}}-\sqrt{3x-2}=1-x\)
giải pt \(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\ge\dfrac{3}{2}\)
Giải PT: \(\sqrt{2x+3+\sqrt{x+2}}+\sqrt{2x+2-\sqrt{x+2}}=1+2\sqrt{x+2}\)
Giải PT: \(\sqrt{2x+3+\sqrt{x+2}}+\sqrt{2x+2-\sqrt{x+2}}=1+2\sqrt{x+2}\)
Giải PT: \(\sqrt{2x+3\sqrt{x+2}}+\sqrt{2x+2-\sqrt{x+2}}=1+2\sqrt{x+2}\)
Sửa lại đề bài cho mk là: \(\sqrt{2x+3+\sqrt{x+2}}+\sqrt{2x+2-\sqrt{x+2}}=1+2\sqrt{x+2}\)
Giải pt:
\(x^3+\left(x+1\right)\sqrt{x+1}+2\sqrt{2}=\left(x+\sqrt{x+1}+\sqrt{2}\right)^3\)
Đk:\(x\ge-1\)
Đặt \(\left(a,b,c\right)=\left(x;\sqrt{x+1};\sqrt{2}\right)\)
Pt tt: \(a^3+b^3+c^3=\left(a+b+c\right)^3\)
\(\Leftrightarrow a^3+b^3+c^3=\left(a+b\right)^3+3\left(a+b\right)^2c+3\left(a+b\right)c^2+c^3\)
\(\Leftrightarrow0=3ab\left(a+b\right)+3\left(a+b\right)^2c+3\left(a+b\right)c^2\)
\(\Leftrightarrow3\left(a+b\right)\left(ab+ac+bc+c^2\right)=0\)
\(\Leftrightarrow3\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a+b=0\\b+c=0\\a+c=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x+\sqrt{x+1}=0\\\sqrt{x+1}+\sqrt{2}=0\left(vn\right)\\x+\sqrt{2}=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}\sqrt{x+1}=-x\\x=-\sqrt{2}\left(ktm\right)\end{matrix}\right.\)\(\Rightarrow\)\(\sqrt{x+1}=-x\)
\(\Leftrightarrow\left\{{}\begin{matrix}-1\le x\le0\\x+1=x^2\end{matrix}\right.\)\(\Rightarrow x=\dfrac{1-\sqrt{5}}{2}\) (tm)
Vậy...
Giải pt
\(x^2-x-2=\sqrt{3-x}+\sqrt{x}\)
\(ĐK:0\le x\le3\\ PT\Leftrightarrow x^2-3x+1=-\left(x-2-\sqrt{3-x}\right)-\left(x-1-\sqrt{x}\right)\\ \Leftrightarrow x^2-3x+1+\dfrac{x^2-3x+1}{x-2+\sqrt{3-x}}+\dfrac{x^2-3x+1}{x-1+\sqrt{x}}=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2-3x+1=0\\1+\dfrac{1}{x-2+\sqrt{3-x}}+\dfrac{1}{x-1+\sqrt{x}}=0\left(1\right)\end{matrix}\right.\)
Với \(0\le x\le3\Leftrightarrow\dfrac{1}{x-2+\sqrt{3-x}}\ge\dfrac{1}{3-2+\sqrt{3-0}}>0;\dfrac{1}{x-1+\sqrt{x}}\ge\dfrac{1}{3-1+\sqrt{3}}>0\)
\(\Leftrightarrow\left(1\right)>0\left(vn\right)\\ \Leftrightarrow x^2-3x+1=0\)
Pt này chỉ có 1 nghiệm \(x=\dfrac{3+\sqrt{5}}{2}\) thôi
Nếu \(0\le x\le3\) thì \(1+\dfrac{1}{x-2+\sqrt{3-x}}+\dfrac{1}{x-1+\sqrt{x}}\) vẫn có thể âm (ví dụ, với \(x=\dfrac{1}{4}\) )
Do đó ngay từ đầu cần biện luận, thu hẹp khoảng x lại để loại nghiệm và chắc chắn liên hợp kia sẽ dương
Nhận thấy \(\sqrt{3-x}+\sqrt{x}>0\) nên \(x^2-x-2>0\Rightarrow\left[{}\begin{matrix}x< -1\\x>2\end{matrix}\right.\)
\(\Rightarrow2< x\le3\)
Khi đó nghiệm \(x=\dfrac{3-\sqrt{5}}{2}\) bị loại (nhỏ hơn 2) đồng thời chắn chắn được \(1+\dfrac{1}{x-2+\sqrt{3-x}}+\dfrac{1}{x-1+\sqrt{x}}>0\)