Cho dãy số sau:\(\frac{1}{6};\frac{2}{15};\frac{3}{40};\frac{4}{96};\frac{5}{204};...\)
Hãy tính tổng 10 phân số đầu tiên.
cho dãy số \(1;\frac{1}{3};\frac{1}{6};\frac{1}{12};\frac{1}{24};...\)
tính tổng 10 số hạng đầu tien của dãy.
\(\frac{213}{128}\)
Dễ dàng nhận thấy dãy số từ 1/3; 1/6... đến n=9 là một cấp số nhân có tổng Sn=1/3x((1/2^9)-1)/(1/2-1)=511/768
Vậy tổng của 10 số hạng đầu tiên của dãy số là: 1+ 511/768=1279/768
Cho dãy số
\(1,\frac{1}{2},\frac{1}{4},\frac{1}{8}, \ldots \;\) (số hạng sau bằng một nửa số hạng liền trước nó)
Công thức tổng quát của dãy số đã cho là:
A. \({u_n} = {\left( {\frac{1}{2}} \right)^n}\)
B. \({u_n} = \frac{{{{\left( { - 1} \right)}^n}}}{{{2^{n - 1}}}}\)
C. \({u_n} = \frac{1}{{2n}}\)
D. \({u_n} = {\left( {\frac{1}{2}} \right)^{n - 1}}\)
Ta có: \({u_1} = 1,\;q = \frac{{\frac{1}{2}}}{1} = \frac{1}{2}\).
Suy ra công thức tổng quát của dãy số \({u_n} = {\left( {\frac{1}{2}} \right)^{n - 1}}\).
Chọn đáp án D.
Cho dãy số: \(\frac{1}{2};\frac{1}{6};\frac{1}{12};\frac{1}{20};\frac{1}{30};...\)
Tính tổng 10 số đầu tiên của dãy trên.
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+n_{10}\)
Nhận xét : \(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+\frac{1}{8\cdot9}+\frac{1}{9\cdot10}+\frac{1}{10\cdot11}\)
Tổng : \(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\)
\(=1-\frac{1}{11}=\frac{10}{11}\)
Tìm số các số hạng của dãy sau
\(\frac{1}{2};\frac{1}{4};\frac{1}{6};....;\frac{1}{2014}\)
có tất cả số hạng là:
(2014-2):2+1=1007(số hạng )
tick nha
Cho dãy phân số \(\frac{1}{6},\frac{1}{12},\frac{1}{20},\frac{1}{30},\frac{1}{42},.....\)a, Viết tiếp 3 phân số vào dãy . b,Số hạng thứ 20 có thuộc dãy là phân số nào c,Tính tổng của dauyx phân số đả viết
Cho các dãy phân số \(\frac{1}{2},\frac{1}{6},\frac{1}{12},\frac{1}{20}........\) a, Nêu quy luật viết dãy phân số trên b, Tính nhanh tổng 10 số hạng đầu tiên của dãy phân số
Qui luật là thế này nha em : 1/1x2 ;1/2*3;1/3*4 ,....
Cái tính tổng thì tách 1/2=1-1/2 ;1/6=1/2-1/3;1/12=1/3-1/4 tương tự đi cộng lại là ra
Quy luật của dãy là:1/2,1/6,1/12,1/20=1/1x2,1/2x3,1/3x4,1/4x5
Tính tổng của 100 số hạng đầu tiên của dãy các phân số sau :
\(\frac{1}{6},\frac{1}{66},\frac{1}{176},\frac{1}{336},...\)
Ta gọi số thứ 100 là \(\frac{1}{x}\)
Ta có tổng :
\(\frac{1}{6}+\frac{1}{66}+\frac{1}{176}+\frac{1}{336}+...+\frac{1}{x}\)
= \(\frac{1}{1.6}+\frac{1}{6.11}+\frac{1}{11.16}+\frac{1}{16.21}+...+\frac{1}{x}\)
Ta có công thức : \(U_n=U_1+\left(n-1\right).d\)
Vậy ta áp dụng : \(U_{100}=1+\left(100-1\right).5=496\)
=) Số thứ 100 là \(\frac{1}{496.\left(496+5\right)}=\frac{1}{496.501}\)
Ta có tổng của 100 số hạng đầu tiên là :
\(\frac{1}{1.6}+\frac{1}{6.11}+\frac{1}{11.16}+\frac{1}{16.21}+...+\frac{1}{496.501}\)
= \(\frac{1}{1}-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+...+\frac{1}{496}-\frac{1}{501}\)
= \(1-\frac{1}{501}=\frac{500}{501}\)
Vậy tổng của 100 số hạng đầu tiên của dãy phân số trên là : \(\frac{500}{501}\)
Ta nhận thấy:
\(\frac{1}{6};\frac{1}{66};\frac{1}{176};\frac{1}{336}\) = \(\frac{1}{1\times6};\frac{1}{6\times11};\frac{1}{11\times16};\frac{1}{16\times21}\)
PS thứ 1 có TS thứ nhất của MS là: 1
PS thứ 2 có TS thứ nhất của MS là: 6
PS thứ 3 có TS thứ nhất của MS là: 11
PS thứ 4 có TS thứ nhất của MS là: 16
Vậy PS thứ 100 có TS thứ nhất của MS là: 1 + (100 - 1) x 5 = 496
Vậy TS thứ hai của MS là: 501
Ta có:
\(\frac{1}{1\times6}+\frac{1}{6\times11}+\frac{1}{11\times16}+....+\frac{1}{496\times501}\)
\(1-\frac{1}{501}=\frac{500}{501}\)
Chúc bạn học tốt !!!
Tìm tổng của 100 số hạng đầu tiên của dãy sau:\(\frac{1}{6};\frac{1}{66};\frac{1}{176};\frac{1}{336};...\)
Cho dãy số sau
\(\frac{1}{5};\frac{1}{45};\frac{1}{117};\frac{1}{221};\frac{1}{357};.....\)
a) Tìm quy luật của dãy số
b) Viết dạng tổng quát và tìm số hạng thứ 10, thứ 100 của dãy số
c) Tính tổng 100 số hạng đầu tiên của dãy số