Cho a,b,c > \(\dfrac{-1}{4}\). Chứng minh rằng
\(\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}\le\sqrt{21}\)
Cho a, b, c > 0 và a + b + c = 1
CM: \(\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}\le\sqrt{21}\)
Đặt:
\(A=\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}\)
Áp dụng bất đẳng thức bunhiacopxki ta có:
\(A^2=\left(\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}\right)^2\le\left(1^2+1^2+1^2\right)\left(4a+1+4b+1+4c+1\right)=21\)
Hay \(A\le\sqrt{21}\left(đpcm\right)\)
Rảnh quá ủng hộ cách khác nè =))
Áp dụng Cô-si có:
\(\sqrt{4a+1}\cdot\sqrt{\dfrac{7}{3}}\le\dfrac{4a+1+\dfrac{7}{3}}{2}=2a+\dfrac{5}{3}\)
Tương tự vs 2 bđt còn lại: \(\left\{{}\begin{matrix}\sqrt{4b+1}\cdot\sqrt{\dfrac{7}{3}}\le2b+\dfrac{5}{3}\\\sqrt{4c+1}\cdot\sqrt{\dfrac{7}{3}}\le2c+\dfrac{5}{3}\end{matrix}\right.\)
Cộng 2 vế của 3 bđt trên có:
\(\sqrt{\dfrac{7}{3}}\left(\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}\right)\le2\left(a+b+c\right)+5=7\)
\(\Leftrightarrow\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}\le\sqrt{21}\)
Hoàn tất chứng minh
Cho a, b, c>0 và a+b+c = 1. CMR: \(\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}\)\(\le\sqrt{21}\)
Ap dung BDT Bun-hia-cop-xki ta co
\(\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}\le\sqrt{1+1+1}.\sqrt{4\left(a+b+c\right)+3}=\sqrt{3.7}=\sqrt{21}\)
Dau '=' xay ra khi \(a=b=c=\frac{1}{3}\)
cho a,b,c>0; a+b+c+d=1 chứng minh rằng: \(\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}+\sqrt{4d+1}\le4\sqrt{2}\)
Ta có
\(\sqrt{2}\sqrt{4a+1}\le\frac{4a+3}{2}\)
\(\sqrt{2}\sqrt{4b+1}\le\frac{4b+3}{2}\)
\(\sqrt{2}\sqrt{4c+1}\le\frac{4c+3}{2}\)
\(\sqrt{2}\sqrt{4d+1}\le\frac{4d+3}{2}\)
Cộng vế theo vế ta được
\(\sqrt{2}\left(\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}+\sqrt{4d+1}\right)\)
\(\le8\)
<=> \(\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}\sqrt{4d+1}\le4\sqrt{2}\)
1) Cho a,b,c>0 và a+b+c=3
Chứng minh rằng \(\frac{1}{4a^2+b^2+c^2}+\frac{1}{a^2+4b^2+c^2}+\frac{1}{a^2+b^2+4c^2}\le\frac{1}{2}\)
2) Giaỉ phương trình
\(\frac{4}{\sqrt{x-2}}+\frac{1}{\sqrt{y-1}}+\frac{25}{\sqrt{z-5}}=16-\sqrt{x-2}-\sqrt{y-1}-\sqrt{z-5}\)
Thôi giải lại câu 1:v (ý tưởng dồn biến là quá trâu bò! Bên AoPS em mới phát hiện ra có một cách bằng Cauchy-Schwarz quá hay!)
\(BĐT\Leftrightarrow\Sigma_{cyc}\frac{\left(a+b+c\right)^2}{2a^2+\left(a^2+b^2\right)+\left(a^2+c^2\right)}\le\frac{9}{2}\)(*)
BĐT này đúng theo Cauchy-Schwarz: \(VT_{\text{(*)}}\le\Sigma_{cyc}\left(\frac{a^2}{2a^2}+\frac{b^2}{a^2+b^2}+\frac{c^2}{a^2+c^2}\right)=\frac{9}{2}\)
Ta có đpcm.
Equality holds when a = b = c = 1 (Đẳng thức xảy ra khi a = b =c = 1)
1/Đặt \(VT=f\left(a;b;c\right)\) và \(0< t=\frac{a+b}{2}\)
Ta có: \(f\left(a;b;c\right)-f\left(t;t;c\right)=\frac{1}{4a^2+b^2+c^2}+\frac{1}{4b^2+a^2+c^2}-\frac{2}{5t^2+c^2}+\frac{1}{a^2+b^2+4c^2}-\frac{1}{2t^2+4c^2}\)
\(=\frac{5t^2-4a^2-b^2}{\left(5t^2+c^2\right)\left(4a^2+b^2+c^2\right)}+\frac{5t^2-4b^2-a^2}{\left(5t^2+c^2\right)\left(4b^2+a^2+c^2\right)}+\frac{2t^2-a^2-b^2}{\left(a^2+b^2+4c^2\right)\left(2t^2+4c^2\right)}\)
\(=-\frac{1}{4}\left(a-b\right)\left[\frac{\left(11a+b\right)}{\left(5t^2+c^2\right)\left(4a^2+b^2+c^2\right)}-\frac{\left(a+11b\right)}{\left(5t^2+c^2\right)\left(4b^2+a^2+c^2\right)}\right]+\frac{2t^2-a^2-b^2}{\left(a^2+b^2+4c^2\right)\left(2t^2+4c^2\right)}\)
Xét cái ngoặc to: \(\frac{\left(11a+b\right)}{\left(5t^2+c^2\right)\left(4a^2+b^2+c^2\right)}-\frac{\left(a+11b\right)}{\left(5t^2+c^2\right)\left(4b^2+a^2+c^2\right)}\)
\(=\frac{\left(11a+b\right)\left(4b^2+a^2+c^2\right)-\left(a+11b\right)\left(4a^2+b^2+c^2\right)}{\left(5t^2+c^2\right)\left(4a^2+b^2+c^2\right)\left(4b^2+a^2+c^2\right)}\)
\(=\frac{\left(a-b\right)\left(7a^2-36ab+7b^2+10c^2\right)}{\left(5t^2+c^2\right)\left(4a^2+b^2+c^2\right)\left(4b^2+a^2+c^2\right)}\)
Từ đó: f(a;b;c) -f(t;t;c)
\(=-\frac{\frac{1}{4}\left(a-b\right)^2\left(7a^2-36ab+7b^2+10c^2\right)}{\left(5t^2+c^2\right)\left(4a^2+b^2+c^2\right)\left(4b^2+a^2+c^2\right)}+\frac{-\frac{1}{2}\left(a-b\right)^2}{\left(a^2+b^2+4c^2\right)\left(2t^2+4c^2\right)}\)
\(=-\frac{1}{4}\left(a-b\right)^2\left[\frac{\left(7a^2-36ab+7b^2+10c^2\right)}{\left(5t^2+c^2\right)\left(4a^2+b^2+c^2\right)\left(4b^2+a^2+c^2\right)}+\frac{2}{\left(a^2+b^2+4c^2\right)\left(2t^2+4c^2\right)}\right]\le0\)
Do đó \(f\left(a;b;c\right)\le f\left(t;t;c\right)=f\left(t;t;3-2t\right)\)
\(=\frac{-9\left(t-1\right)^4}{2\left(3t^2-8t+6\right)\left(3t^2-4t+3\right)}+\frac{1}{2}\le\frac{1}{2}\)
Ta có đpcm.
Cho 1< a, b, c <2. Chứng minh rằng
\(\frac{b\sqrt{a}}{4b\sqrt{c}-c\sqrt{a}}+\frac{c\sqrt{b}}{4c\sqrt{a}-a\sqrt{b}}+\frac{a\sqrt{c}}{4a\sqrt{b}-b\sqrt{c}}\ge1\)
Ta có: \(4b\sqrt{c}-c\sqrt{a}=\sqrt{c}\left(4b-\sqrt{ac}\right)>0\)( do \(1< a,b,c< 2\))
Tương tự => Các MS dương
\(VT=\frac{ba}{4b\sqrt{ac}-ca}+\frac{cb}{4c\sqrt{ba}-ab}+\frac{ac}{4a\sqrt{bc}-bc}\)
Áp dụng BĐT cosi schawr ta có
\(VT\ge\frac{\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)^2}{4b\sqrt{ac}+4c\sqrt{ab}+4a\sqrt{bc}-ab-bc-ac}\)
Áp dụng cosi ta có \(2b\sqrt{ac}=2\sqrt{ab}.\sqrt{ac}\le ab+ac\);\(2c\sqrt{ab}\le ac+bc\);\(2a\sqrt{bc}\le ab+ac\)
=> \(VT\ge\frac{\left(\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\right)^2}{ab+bc+ac+2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ac}}=\frac{\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)^2}{\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)^2}=1\)(ĐPCM)
Dấu bằng xảy ra khi a=b=c
cho \(a+b+c=1\) và \(a,b,c\ge-\frac{1}{4}\) chứng minh rằng :
\(\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}< 5\)
Ap dung BDT Bun-hia-cop-xki ta co:
\(\left(\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}\right)^2\le\left(1+1+1\right)\left[4\left(a+b+c\right)+3\right]=21\)
\(\Rightarrow-\sqrt{21}\le\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}\le\sqrt{21}< 5\)
\(\Rightarrow\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}< 5\)
Ap dung BDT Bun-hia-cop-xki ta co:
\left(\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}\right)^2\le\left(1+1+1\right)\left[4\left(a+b+c\right)+3\right]=21(4a+1+4b+1+4c+1)2≤(1+1+1)[4(a+b+c)+3]=21
\Rightarrow-\sqrt{21}\le\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}\le\sqrt{21}< 5⇒−21≤4a+1+4b+1+4c+1≤21<5
\Rightarrow\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}< 5⇒4a+1+4b+1+4c+1<5
Cho a. b. c không âm và có tổng bằng 1. Chứng minh rằng:
\(\frac{a}{4b^2+1}+\frac{b}{4c^2+1}+\frac{c}{4a^2+1}\ge\left(a\sqrt{a}+b\sqrt{b}+c\sqrt{c}\right)^2\)
đặt \(S=\frac{a}{4b^2+1}+\frac{b}{4c^2+1}+\frac{c}{4a^2+1}\)
\(=\frac{a^3}{4a^2b^2+a^2}+\frac{b^3}{4b^2c^2+b^2}+\frac{c^3}{4a^2c^2+c^2}\ge\frac{\left(a\sqrt{a}+b\sqrt{b}+c\sqrt{c}\right)^2}{4a^2b^2+4b^2c^2+4c^2a^2+a^2+b^2+c^2}\)
xét hiệu:
1-4(a2b2+b2c2+c2a2)-a2-b2-c2
=2ab+2bc+2ca-4(a2b2+b2c2+c2a2)
=2ab(1-2ab)+2bc(1-2bc)+2ca(1-2ca)
ta có:
\(2ab\le\frac{\left(a+b\right)^2}{2}\le\frac{1}{2};2bc\le\frac{\left(b+c\right)^2}{2}\le\frac{1}{2};2ca\le\frac{\left(c+a\right)^2}{2}\le\frac{1}{2}\)
\(\Rightarrow2ab\left(1-2ab\right);2bc\left(1-2bc\right);2ca\left(1-2ca\right)\ge0\)
\(\Rightarrow1\ge4\left(a^2b^2+b^2c^2+c^2a^2\right)+a^2+b^2+c^2\)
\(\Rightarrow\frac{\left(a\sqrt{a}+b\sqrt{b}+c\sqrt{c}\right)^2}{4\left(a^2b^2+b^2c^2+c^2a^2\right)+a^2+b^2+c^2}\ge\left(a\sqrt{a}+b\sqrt{b}+c\sqrt{c}\right)^2\)
\(\Rightarrow\frac{a}{4b^2+1}+\frac{b}{4c^2+1}+\frac{c}{4a^2+1}\ge\left(a\sqrt{a}+b\sqrt{b}+c\sqrt{c}\right)^2\)
=>đpcm
dấu"=" xảy ra khi 1 số=1;2 số còn lại =0
Bài1 Cho a,b,c >0 vaf a+b+c = 1
Chứng minh: \(\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}< 3\)
Bài 2: Cho x+y = 2 Tìm GTNN của A = \(\dfrac{1}{x^2+y^2}+\dfrac{1}{xy}\)
2) \(A=\dfrac{1}{x^2+y^2}+\dfrac{1}{xy}=\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}+\dfrac{1}{4xy}+\dfrac{1}{4xy}\)
Áp dụng BĐT Cauchy-Schwa, ta có:
\(A\ge\dfrac{4}{\left(x+y\right)^2}+\dfrac{1}{\left(x+y\right)^2}+\dfrac{1}{\left(x+y\right)^2}=\dfrac{3}{2}\)
1) Áp dụng BĐT Bunyakovsky, ta có:
\(\left(4a+1+4b+1+4c+1\right)3\ge\left(\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}\right)^2\)
\(\Rightarrow VT\le\sqrt{21}< 3\)(Sai)
Vậy đề sai, thử với a=0,5;b=0,1;c=0,4
Cho a, b, c là các số thực dương. Chứng minh rằng :
\(\frac{a}{\sqrt{4a^2+\left(b+c\right)^2}}+\frac{b}{\sqrt{4b^2+\left(c+a\right)^2}}+\frac{c}{\sqrt{4c^2+\left(a+b\right)^2}}\le\frac{3\sqrt{2}}{4}\)
\(P=\sum\frac{a}{\sqrt{\left(2a\right)^2+\left(b+c\right)^2}}\le\sqrt{2}\sum\frac{a}{2a+b+c}=\sqrt{2}\sum a\left(\frac{1}{a+b+a+c}\right)\le\frac{\sqrt{2}}{4}\sum\left(\frac{a}{a+b}+\frac{a}{a+c}\right)=\frac{3\sqrt{2}}{4}\)
Dấu "=" xảy ra khi \(a=b=c\)