Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dương Thị Thu Hiền
Xem chi tiết
Lê Thu Hiền
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 7 2021 lúc 21:58

a.

ĐKXĐ: \(-1\le x\le1\)

Đặt \(\sqrt{1-x^2}=t\Rightarrow0\le t\le1\)

\(x^2=1-t^2\Rightarrow x^4=t^4-2t^2+1\)

Pt trở thành:

\(729\left(t^4-2t^2+1\right)+8t=36\)

\(\Leftrightarrow729t^4-1458t^2+8t+693=0\)

\(\Leftrightarrow\left(9t^2+2t-9\right)\left(81t^2-18t-77\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}9t^2+2t-9=0\\81t^2-18t-77=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}t=\dfrac{\sqrt{82}-1}{9}\\t=\dfrac{1+\sqrt{78}}{9}\end{matrix}\right.\)

\(\Rightarrow x=\pm\sqrt{1-t^2}=...\)

Nguyễn Việt Lâm
21 tháng 7 2021 lúc 21:59

b.

ĐKXĐ: ...

\(-3\left(10+4x-x^2\right)-5\sqrt{10+4x-x^2}+42=0\)

Đặt \(\sqrt{10+4x-x^2}=t\ge0\)

\(\Rightarrow-3t^2-5t+42=0\)

\(\Rightarrow\left[{}\begin{matrix}t=3\\t=-\dfrac{14}{3}\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{10+4x-x^2}=3\)

\(\Leftrightarrow x^2-4x-1=0\)

\(\Leftrightarrow x=...\)

Phạm Băng Băng
Xem chi tiết
Vũ Đình Thái
Xem chi tiết
Lê Thị Thục Hiền
24 tháng 5 2021 lúc 21:13

Đk: \(x\ge6\)

pt\(\Leftrightarrow\sqrt{5x^2+4x}=5\sqrt{x}+\sqrt{x^2-3x-18}\)

\(\Leftrightarrow5x^2+4x=25x+x^2-3x-18+10\sqrt{x\left(x^2-3x-18\right)}\)

\(\Leftrightarrow2x^2-9x+9=5\sqrt{x^3-3x^2-18x}\)

\(\Leftrightarrow4x^4+81x^2+81-36x^3-162x+36x^2=25\left(x^3-3x^2-18x\right)\)

\(\Leftrightarrow4x^4-61x^3+192x^2+288x+81=0\)

\(\Leftrightarrow\left(x-9\right)\left(4x+3\right)\left(x^2-7x-3\right)=0\)

\(\Leftrightarrow\left(4x+3\right)\left(x-9\right)\left(x-\dfrac{7+\sqrt{61}}{2}\right)\left(x-\dfrac{7-\sqrt{61}}{2}\right)=0\)

mà x \(\ge6\) \(\Rightarrow\left\{{}\begin{matrix}4x+3>0\\x-\dfrac{7-\sqrt{61}}{2}>0\end{matrix}\right.\)

\(\Rightarrow\left(x-9\right)\left(x-\dfrac{7+\sqrt{61}}{2}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=9\\x=\dfrac{7+\sqrt{61}}{2}\end{matrix}\right.\)

Vậy.....

Kinder
Xem chi tiết
Nguyễn Thị Cầu Nguyễn
3 tháng 9 2023 lúc 9:42

Để giải các phương trình này, chúng ta sẽ làm từng bước như sau: 1. 13x(7-x) = 26: Mở ngoặc và rút gọn: 91x - 13x^2 = 26 Chuyển về dạng bậc hai: 13x^2 - 91x + 26 = 0 Giải phương trình bậc hai này để tìm giá trị của x. 2. (4x-18)/3 = 2: Nhân cả hai vế của phương trình với 3 để loại bỏ mẫu số: 4x - 18 = 6 Cộng thêm 18 vào cả hai vế: 4x = 24 Chia cả hai vế cho 4: x = 6 3. 2xx + 98x2022 = 98x2023: Rút gọn các thành phần: 2x^2 + 98x^2022 = 98x^2023 Chia cả hai vế cho 2x^2022: x + 49 = 49x Chuyển các thành phần chứa x về cùng một vế: 49x - x = 49 Rút gọn: 48x = 49 Chia cả hai vế cho 48: x = 49/48 4. (x+1) + (x+3) + (x+5) + ... + (x+101): Đây là một dãy số hình học có công sai d = 2 (do mỗi số tiếp theo cách nhau 2 đơn vị). Số phần tử trong dãy là n = 101/2 + 1 = 51. Áp dụng công thức tổng của dãy số hình học: S = (n/2)(a + l), trong đó a là số đầu tiên, l là số cuối cùng. S = (51/2)(x + (x + 2(51-1))) = (51/2)(x + (x + 100)) = (51/2)(2x + 100) = 51(x + 50) Vậy, kết quả của các phương trình là: 1. x = giá trị tìm được từ phương trình bậc hai. 2. x = 6 3. x = 49/48 4. S = 51(x + 50)

Nguyễn Thị Cầu Nguyễn
3 tháng 9 2023 lúc 9:43

nhầm

 

Thành
Xem chi tiết
Buddy
6 tháng 2 2021 lúc 10:47

Giải phương trình $x^2-4x+6=\sqrt{2x^2-5x+3}+\sqrt{-3x^2+9x-5}$ - Phương trình - hệ phương trình - bất phương trình - Diễn đàn Toán học

 
toán khó mới hay
Xem chi tiết
KAl(SO4)2·12H2O
10 tháng 11 2017 lúc 21:21

\(ĐK:x\ge3\)

\(\Leftrightarrow5x^2+4=x^2+22x-18+10\sqrt{x.x-6.x+3}\)

\(\Leftrightarrow4x^2-18x+18=10\sqrt{x+3.x^2-6x}=0\)

\(\Leftrightarrow4.x^2-6x+6.x+3-10\sqrt{x+3.x^2-6x}=0\)

\(\Leftrightarrow2\sqrt{x^2-6x}-3\sqrt{x+3}.\sqrt{x^2-6x}-\sqrt{x+3}=0\)

nguyễn thị lan hương
28 tháng 5 2019 lúc 21:15

ĐÁP SỐ là mấy  vậy 

Julian Edward
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 10 2019 lúc 17:32

a/ \(\Leftrightarrow x^2+5x-2-2\sqrt[3]{x^2+5x-2}+4=0\)

Đặt \(\sqrt[3]{x^2+5x-2}=a\)

\(a^3-2a+4=0\)

\(\Leftrightarrow\left(a+2\right)\left(a^2-2a+2\right)=0\Rightarrow a=-2\)

\(\Rightarrow\sqrt[3]{x^2+5x-2}=-2\Rightarrow x^2+5x+6=0\Rightarrow...\)

b/ ĐKXĐ:...

\(\Leftrightarrow-3\left(-x^2+4x+10\right)-5\sqrt{-x^2+4x+10}+42=0\)

Đặt \(\sqrt{-x^2+4x+10}=a\ge0\)

\(-3a^2-5a+42=0\Rightarrow\left[{}\begin{matrix}a=3\\a=-\frac{14}{3}\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x^2+4x+10}=3\Rightarrow x^2-4x-1=0\Rightarrow...\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
22 tháng 10 2019 lúc 17:42

c/ ĐKXĐ: ...

\(\Leftrightarrow x^2+3x+3\sqrt{x^2+3x}-10=0\)

Đặt \(\sqrt{x^2+3x}=a\ge0\)

\(a^2+3a-10=0\Rightarrow\left[{}\begin{matrix}a=2\\a=-5\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x^2+3x}=2\Rightarrow x^2+3x-4=0\)

d/ ĐKXĐ: \(-1\le x\le2\)

\(\Leftrightarrow\sqrt{3-x+x^2}=1+\sqrt{2+x-x^2}\)

\(\Leftrightarrow3-x+x^2=3+x-x^2+2\sqrt{2+x-x^2}\)

\(\Leftrightarrow2+x-x^2+\sqrt{2+x-x^2}-2=0\)

Đặt \(\sqrt{2+x-x^2}=a\ge0\)

\(a^2+a-2=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-2\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{2+x-x^2}=1\Leftrightarrow x^2-x-1=0\)

e/ \(\Leftrightarrow\sqrt{x^2-3x+3}-1+\sqrt{x^2-3x+6}-2=0\)

\(\Leftrightarrow\frac{x^2-3x+2}{\sqrt{x^2-3x+3}+1}+\frac{x^2-3x+2}{\sqrt{x^2-3x+6}+2}=0\)

\(\Leftrightarrow\left(x^2-3x+2\right)\left(\frac{1}{\sqrt{x^2-3x+3}+1}+\frac{1}{\sqrt{x^2-3x+6}+2}\right)=0\)

\(\Leftrightarrow x^2-3x+2=0\)

Khách vãng lai đã xóa
Thiên Yết
Xem chi tiết