Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
chử mai
Xem chi tiết
Võ Thị Quỳnh Giang
30 tháng 10 2017 lúc 21:38

ta có: \(a^2+b^2=1\Rightarrow\hept{\begin{cases}a^2\le1\\b^2\le1\end{cases}\Rightarrow\hept{\begin{cases}0\le a\le1\\0\le b\le1\end{cases}\Rightarrow}\hept{\begin{cases}a^3\le a^2\\b^3\le b^2\end{cases}}.}\)

\(\Rightarrow a^3+b^3\le a^2+b^2=1\)

\(\Rightarrow a^3+b^3\le1\)   (*)

Mặt khác ta có:  \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\) (BĐT bu-nhi-a)

\(\Leftrightarrow\left(a+b\right)^2\le2\) ( vì a^2 +b^2 =1)

\(\Leftrightarrow a+b\le\sqrt{2}\)  (1)

mà \(\left(a^2+b^2\right)^2\le\left(a+b\right)\left(a^3+b^3\right)\) (BĐT bu-nhi-a)

\(\Leftrightarrow1\le\left(a+b\right)\left(a^3+b^3\right)\)   (2)

Thay (1) vào(2) ta đc: \(1\le\sqrt{2}\left(a^3+b^3\right)\)

\(\Leftrightarrow a^3+b^3\ge\frac{1}{\sqrt{2}}\)   (**)

Từ (*);(**)=> đpcm

Phan PT
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 4 2021 lúc 22:43

Ta có: 

\(b\ge0\Rightarrow b^3+1\ge1\Rightarrow a\sqrt{b^3+1}\ge a\)

Hoàn toàn tương tự: \(b\sqrt{c^3+1}\ge b\) ;\(c\sqrt{a^3+1}\ge c\)

Cộng vế:

\(P\ge a+b+c=3\) (đpcm)

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(0;0;3\right)\) và hoán vị

Lại có:

\(a\sqrt{b^3+1}=a\sqrt{\left(b+1\right)\left(b^2-b+1\right)}\le\dfrac{a\left(b^2+2\right)}{2}\)

Tương tự: \(b\sqrt{c^3+1}\le\dfrac{b\left(c^2+2\right)}{2}\) ; \(c\sqrt{a^3+1}\le\dfrac{c\left(a^2+2\right)}{2}\)

\(\Rightarrow P\le\dfrac{1}{2}\left(ab^2+bc^2+ca^2\right)+a+b+c=\dfrac{1}{2}\left(ab^2+bc^2+ca^2\right)+3\)

\(\Rightarrow P\le\dfrac{1}{2}\left(ab^2+bc^2+ca^2+2abc\right)+3\)

Nên ta chỉ cần chứng minh: \(Q=ab^2+bc^2+ca^2+2abc\le4\)

Không mất tính tổng quát, giả sử \(a=mid\left\{a;b;c\right\}\)

\(\Rightarrow\left(a-b\right)\left(a-c\right)\le0\Leftrightarrow a^2+bc\le ab+ac\)

\(\Rightarrow ca^2+bc^2\le abc+ac^2\)

\(\Rightarrow Q\le ab^2+ac^2+2abc=a\left(b+c\right)^2=\dfrac{1}{2}.2a\left(b+c\right)\left(b+c\right)\le\dfrac{1}{54}\left(2a+2b+2c\right)^3=4\) (đpcm)

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(1;2;0\right)\) và 1 số hoán vị của chúng

Hoàng Tú Anh
Xem chi tiết
Nguyễn Quỳnh Nga
21 tháng 8 2017 lúc 16:50

a)  Giả sử bất đẳng thức trên là đúng \(\Rightarrow a^2+b^2+c^2+\frac{3}{4}+a+b+c\ge0\)\(\Rightarrow\left(a^2+a+\frac{1}{4}\right)+\left(b^2+b+\frac{1}{4}\right)+\left(c^2+c+\frac{1}{4}\right)\ge0\)(luôn đúng với mọi a,b,c), ta có ĐPCM                            câu b tương tự nha bn!

Thắng Nguyễn
21 tháng 8 2017 lúc 17:47

Bài 2:Áp dụng BĐT AM-GM ta có: 

\(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\ge3\sqrt[3]{\frac{x}{y}\cdot\frac{y}{z}\cdot\frac{z}{x}}=3\)

Khi a=b=c

Bài 3:

Áp dụng BĐT C-S dạng ENgel ta có: 

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{\left(1+1+1\right)^2}{a+b+c}=9\)

Khi \(a=b=c=\frac{1}{3}\)

Bài 4:

Áp dụng BĐT AM-GM ta có:

\(x+y\ge2\sqrt{xy};y+z\ge2\sqrt{yz};x+z\ge2\sqrt{xz}\)

Nhân theo vế 3 BĐT trên ta có ĐPCM

Khi x=y=z

Shinichi Kudo
Xem chi tiết

Vì \(a\ge0\),\(b\ge0\),\(c\ge0\),áp dụng bđt Cauchy cho 3 số dương a,b,c ta có

\(a+b\ge2\sqrt{ab}\)

\(b+c\ge2\sqrt{bc}\)

\(c+a\ge2\sqrt{ac}\)

Nhân từng vế bđt trên =>đpcm

Joker
7 tháng 5 2019 lúc 23:03

\(\text{có:}\frac{k}{n}+\frac{n}{k}\ge2\Leftrightarrow\frac{k}{n}-2+\frac{n}{k}\ge0\Leftrightarrow\frac{k}{n}-2\sqrt{\frac{k}{n}}.\sqrt{\frac{n}{k}}+\frac{n}{k}\ge0\Leftrightarrow\left(\sqrt{\frac{k}{n}}-\sqrt{\frac{n}{k}}\right)^2\ge0\forall k,n>0\)

\(\left(a+b\right).\left(b+c\right).\left(c+a\right)\ge8abc\)

\(\Leftrightarrow\left(ab+ac+b^2+bc\right).\left(a+c\right)\ge8abc\)

\(\Leftrightarrow a^2b+a^2c+ab^2+abc+abc+ac^2+b^2c+bc^2\ge8abc\)

\(\Leftrightarrow2+\frac{a}{c}+\frac{a}{b}+\frac{b}{c}+\frac{c}{b}+\frac{b}{a}+\frac{c}{a}\ge8\)

\(\Leftrightarrow2+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{c}{b}+\frac{b}{c}\right)\ge8\)(luôn đúng với mọi a,b,c >=0)

Joker
7 tháng 5 2019 lúc 23:06

sửa dòng đầu: \(k,n\ge0\)

Thái Sơn Phạm
Xem chi tiết
Ngọc Ánh
Xem chi tiết
Lightning Farron
10 tháng 11 2016 lúc 17:55

a)Áp dụng Bđt Cô si ta có:

\(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\ge\frac{3}{\sqrt[3]{\left(a+1\right)\left(b+1\right)\left(c+1\right)}}\)

\(\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\ge\frac{3\sqrt[3]{abc}}{\sqrt[3]{\left(a+1\right)\left(b+1\right)\left(c+1\right)}}\)

Cộng theo vế 2 bđt trên ta có:

\(3\ge\frac{3\left(\sqrt[3]{abc}+1\right)}{\sqrt[3]{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\)\(\Rightarrow\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge\left(1+\sqrt[3]{abc}\right)^3\)

Dấu = khi a=b=c

b)Áp dụng Bđt Cô-si ta có:

\(\frac{bc}{a}+\frac{ca}{b}\ge2\sqrt{\frac{bc^2a}{ab}}=2c\)

\(\frac{ca}{b}+\frac{ab}{c}\ge2\sqrt{\frac{ca^2b}{bc}}=2a\)

\(\frac{bc}{a}+\frac{ab}{c}\ge2\sqrt{\frac{b^2ac}{ac}}=2b\)

Cộng theo vế 3 bđt trên ta có:

\(2\left(\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\right)\ge2\left(a+b+c\right)\)

\(\Rightarrow\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\ge a+b+c\)

Đấu = khí a=b=c

 

Lightning Farron
10 tháng 11 2016 lúc 17:56

bn sử đấu = khí dấu = khi nhé

tiểu an Phạm
Xem chi tiết
Phương Hà
Xem chi tiết
Kanzaki Mizuki
Xem chi tiết
Nguyễn Việt Lâm
3 tháng 9 2020 lúc 17:17

\(VT=a^4-4ab^3+3b^4=a^4-ab^3-3ab^3+3b^4\)

\(=a\left(a^3-b^3\right)-3b^3\left(a-b\right)=\left(a-b\right)\left(a^3+a^2b+ab^2\right)-3b^3\left(a-b\right)\)

\(=\left(a-b\right)\left(a^3+a^2b+ab^2-3b^3\right)\)

\(=\left(a-b\right)\left[a^3-b^3+a^2b-b^3+ab^2-b^3\right]\)

\(=\left(a-b\right)\left[\left(a-b\right)\left(a^2+ab+b^2\right)+\left(a-b\right)\left(ab+b^2\right)+b^2\left(a-b\right)\right]\)

\(=\left(a-b\right)^2\left(a^2+2ab+3b^2\right)\)

\(=\left(a-b\right)^2\left[\left(a+b\right)^2+2b^2\right]\ge0\) ;\(\forall a;b\)