cho hình thang vuông abcd có A=D=90 biết AB=2cm, AD= √3 và góc B=150 độ.Tính SABCD.
Cho hình thang vuông ABCD(góc A = góc D=90 độ),biết AB=2cm,CD=4cm,góc C = 45 độ.Tính diện tích ABCD.
Cho hình thang vuông ABCD có góc A = góc D = 90 độ và đường chéo BD vuông với cạch BC. Biết AB= 2cm, AD= 4cm. Tính chu vi và diện tích của hình thang vuông
Xét tam giác ABD và tam giác BDC có:
\(\widehat{BAD}=\widehat{DBC}=90^o\)
\(\widehat{ABD}=\widehat{BDC}\) (Cùng phụ với góc \(\widehat{ADC}\) )
\(\Rightarrow\Delta ABD\sim\Delta BDC\left(g-g\right)\Rightarrow\frac{AB}{BD}=\frac{BD}{DC}\Rightarrow BD^2=\frac{AB}{DC}\)
Xét tam giác vuông ABD, áp dụng định lý Pi-ta-go ta có:
\(DB^2=AB^2+AD^2=2^2+4^2=20\)
Suy ra \(2=\frac{20}{DC}\Rightarrow DC=10cm\)
Xét tam giác vuông BDC, áp dụng định lý Pi-ta-go ta có:
\(BC^2=DC^2-BD^2=10^2-20=80\Rightarrow BC=\sqrt{80}\left(cm\right)\)
Vậy chu vi hình thang vuông bằng: 2 + 4 + 10 + \(\sqrt{80}=14+\sqrt{80}\left(cm\right)\)
Diện tích hình thang bằng: \(\frac{\left(2+10\right).4}{2}=24\left(cm^2\right)\)
Cho hình thang vuông ABCD có A ^ = D ^ = 90 ° , AB = AD = 2cm, DC = 4cm. Tính góc ABC của hình thang.
A. 137 °
B. 136 °
C. 36 °
D. 135 °
Đáp án cần chọn là: D
Từ B kẻ BH vuông góc với CD.
Tứ giác ABHD là hình thang có hai cạnh bên AD // BH nên AD = BH, AB = DH.
Mặt khác, AB = AD = 2cm nên suy ra BH = DH = 2cm.
Do đó: HC = DC – HD = 4 – 2 = 2cm.
Tam giác BHC có BH = HC = 2cm nên tam giác BHC cân đỉnh H.
Lại có B H C ^ = 90 ° (do BH ⊥ CD) nên tam giác BHC vuông cân tại H.
Do đó B C H ^ = 180 ° - B H C ^ ÷ 2 = 180 ° - 90 ° ÷ 2 = 45 °
Xét hình thang ABCD có:
A B C ^ = 360 ° - A ^ + D ^ + C ^ = 360 ° - 90 ° + 90 ° + 45 ° = 135 °
Vậy A B C ^ = 135 ° .
Cho hình thang vuông ABCD , góc A = góc D = 90 độ. Biết AB = 15cm, AD = 20cm. AC cắt BD tại O.
a) Tính OB, OD, AC
b) Tính SABCD (diện tích hình thang ABCD)
Ai biết giải giải đầy đủ giúp mình nhé. Tks nhiều ạ :3
Hình thang ABCD có AD=AB=10cm;BC=20cm;góc A=góc D=90 độ.Tính góc B
hình thang vuông ABCD có góc A bằng góc D và bằng 90 độ, AB = AD = 2cm, DC = 4cm. Tính các góc của hình thang
Cho hình thang vuông ABCD, Â = D = 90°, 2 đường chéo AC và BD vuông góc tại O. Biết AB = 15cm, AD = 20cm.
a) Tính OB, OD.
b) Tính đường chéo AC.
c) Tính SABCD ?
a) Ta có hình thang vuông ABCD, nên ta có: AB^2 + BC^2 = AC^2 AD^2 + DC^2 = AC^2
Vì AB = 15cm, AD = 20cm và ABCD là hình thang vuông, nên ta có: 15^2 + BC^2 = AC^2 20^2 + DC^2 = AC^2
Vì 2 đường chéo AC và BD vuông góc tại O, nên ta có: OB^2 + BC^2 = OC^2 OD^2 + DC^2 = OC^2
Vì ABCD là hình thang vuông, nên ta có: OB^2 + BC^2 = OD^2 + DC^2
Từ hai phương trình trên, ta có thể suy ra OB = OD.
b) Ta có thể tính đường chéo AC bằng cách sử dụng định lí Pythagoras trên tam giác vuông AOC: AC^2 = AO^2 + OC^2
Vì OB = OD, nên ta có AO = OD = OB.
Vậy, ta có: AC^2 = OB^2 + OC^2
c) Để tính diện tích SABCD, ta có thể sử dụng công thức
a: ΔABD vuông tại A
=>BD^2=AB^2+AD^2=625
=>BD=25cm
ΔABD vuông tại A có AO là đường cao
nên BO*BD=BA^2 và DO*DB=DA^2 và AO^2=OD*OB
=>BO=15^2/25=9cm; DO=20^2/25=16cm; AO^2=9*16=144
=>AO=12cm
b: Xét ΔOAB vuông tại O và ΔOCD vuông tại O có
góc OAB=góc OCD
=>ΔOAB đồng dạng với ΔOCD
=>OA/OC=OB/OD
=>9/16=12/OC
=>OC=16*12/9=16*4/3=64/3cm
AC=12+64/3=100/3cm
c: \(S_{ABCD}=\dfrac{1}{2}\cdot AC\cdot BD=\dfrac{1}{2}\cdot\dfrac{100}{3}\cdot25=\dfrac{50}{3}\cdot25=\dfrac{1250}{3}\left(cm^2\right)\)
Cho hình thang ABCD có A=D=90° AB=15 AD=20 đường chéo AC và BD vuông góc ở O
a,tính OB,OD
b,tính AC
c,tính Sabcd
a. tính dễ
b. tam giác ABO đồng dạng tam giác CDO => OB/OD = OA/OC
Tính được OA,OB,OD => OC => tính được AC
c. Sabcd = S tam giác ABD + S tam giác BDC
hình thang vuông ABCD có góc A bằng góc D và bằng 90 độ, AB = AD = 2cm, DC = 4cm. Tính các góc của hình thang
giup minh vs
diện tích hình thang = (đáy lớn + đáy bé)chiều cao : 2 = (2+4)x2:2= 6 cm^2
Lấy K là trung điểm của CD , I là trung điểm của DN
Chứng minh tứ giác ABKD là hình vuông
=> ˆADB=45o(1)ADB^=45o(1)
Chứng minh △ DBC△ DBC là tam giác vuông cân =>ˆDBC=90o(2)=>DBC^=90o(2)
Từ (1) và (2) ta được ˆABC=135oABC^=135o
Ta có △ DBN△ DBN vuông tại B có BI là trung tuyến nên BI =DI =IN (3)
lại có △ DMN△ DMN vuông tại M có MI là trung tuyến nên MI= DI =IN(4)
Kết hợp (3)(4) ta có +△ MIB+△ MIB cân tại I nên ˆIMB=ˆIBMIMB^=IBM^(5)
+△ OIN+△ OINcân tại I nên ˆIBN=ˆBNI(6)IBN^=BNI^(6)
Từ (5) (6) ta được : ˆIBM+ˆIBN+ˆIMB+ˆBNI=270oIBM^+IBN^+IMB^+BNI^=270o
=>ˆMIN=360o−270o=90o=>MIN^=360o−270o=90o
=>MI⊥ DN=>MI⊥ DN
Tam giác vuông DMN có MI vừa là tt vừa là đường cao nên là tam giác vuông cân