Tìm x thoả mãn: \(x^5=x^4+x^3+x^2+x+2\)
tìm tổng của các số nguyên thoả mãn :
1) -4<x<3
2) -5<x<5
3) -10<x<6
4) -6<x<5
5) -5<x<2
1) \(-4< x< 3\)
\(\Rightarrow x\in\left\{-3;-2;-1;0;1;2\right\}\)
Tổng:
\(\left(-3\right)+\left(-2\right)+\left(-1\right)+0+1+2\)
\(=\left(-2+2\right)+\left(-1+1\right)+0-3\)
\(=-3\)
2) \(-5< x< 5\)
\(\Rightarrow x\in\left\{-4;-3;-2;-1;0;1;2;3;4\right\}\)
Tổng:
\(\left(-4\right)+\left(-3\right)+\left(-2\right)+\left(-1\right)+0+1+2+3+3\)
\(=\left(-4+4\right)+\left(-3+3\right)+\left(-2+2\right)+\left(-1+1\right)+0\)
\(=0\)
3) \(-10< x< 6\)
\(\Rightarrow x\in\left\{-9;-8;-7;-6;-5;-4;-3;-2;-1;0;1;2;3;4;5\right\}\)
Tổng:
\(\left(-9\right)+\left(-8\right)+\left(-7\right)++\left(-6\right)+\left(-5\right)+\left(-4\right)+\left(-3\right)+\left(-2\right)+\left(-1\right)+0+1+2+3+4+5\)
\(=-24\)
4) \(-6< x< 5\)
\(\Rightarrow x\in\left\{-5;-4;-3;-2;-1;0;1;2;3;4\right\}\)
Tổng:
\(\left(-5\right)+\left(-4\right)+\left(-3\right)+\left(-2\right)+\left(-1\right)+0+1+2+3+4\)
\(=\left(-4+4\right)+\left(-3+3\right)+\left(-2+2\right)+\left(-1+1\right)+0-5\)
\(=-5\)
5) \(-5< x< 2\)
\(\Rightarrow x\in\left\{-4;-3;-2;-1;0;1\right\}\)
Tổng:
\(\left(-4\right)+\left(-3\right)+\left(-2\right)+\left(-1\right)+0+1\)
\(=\left(-1+1\right)+0+\left(-4-3-2\right)\)
\(=-6\)
tìm x,y nguyên thoả mãn :\(x^2+y^2=1999\)
tìm các số nguyên x,y thỏa mãn \(9x^2+2=y^2+y\)
tìm x nguyên thoả mãn :\(2^x+3^x=5^x\)
a/ Ta có VP là số lẻ nên VT cũng phải là số lẻ. Hay trong 2 số x, y phải có 1 số lẻ.
Giả sử số lẻ đó là x thì ta có
\(\hept{\begin{cases}x=2m+1\\y=2n\end{cases}}\)
\(\Rightarrow\left(2m+1\right)^2+\left(2n\right)^2=1999\)
\(\Leftrightarrow4\left(m^2+m+n\right)=1998\)
Ta thấy VT chia hết chi 4 còn VP không chia hết cho 4 nên phương trình vô nghiệm
b/ \(9x^2+2=y^2+y\)
\(\Leftrightarrow36x^2+8=4y^2+4y\)
\(\Leftrightarrow\left(2y+1\right)^2-36x^2=9\)
\(\Leftrightarrow\left(2y+1-6x\right)\left(2y+1+6x\right)=9\)
Câu còn lại thì chia cả 2 vế cho \(5^x\)rồi làm tiếp
Tìm các số nguyên x,y thoả mãn: x^4 +2x^3 +x^2 + x+ 3= y^2
Tìm x thoả mãn điều kiện cho trước
1. (x-2).(x+2)-(x-3).(x+5)=0
2.( 3.x^2-x+1).(x-1)+x^2.(4-3.x)=5/2
3.(2.x-1).(3-x)+(x-2).(x+3)=(-x).(x-2)
Tìm x, y thoả mãn: |x - 1| + |x - 2| + |y - 3| + |x - 4|
| x - 1| + | x - 2| + | y - 3| + | x - 4|
= 179/28 + 151/28 + 3 + 95/28
= 509/28
tìm x thoả mãn \(\left(\sqrt{x}-4\right)\left(|x+2|-1\right)\left(x^2-3\right)=0\)
\(x\ge0\)
\(\left(\sqrt{x}-4\right)\left(|x+2|-1\right)\left(x^2-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}-4=0\Rightarrow x=16\left(tm\right)\\|x+2|-1=0\Leftrightarrow\left[{}\begin{matrix}x+2=1\Rightarrow x=-1\\x+2=-1\Rightarrow x=-3\end{matrix}\right.\\x^2-3=0\Rightarrow x=\pm\sqrt{3}\end{matrix}\right.\)
Bài 1: a, Tìm GTNN của A = ∣x - 3∣ + ∣x - 4∣ + ∣x - 7∣ b, Tìm x, y thoả mãn ∣x - 2∣ + ∣ y²⁰ + 9∣ = 9
a.
\(A=\left|x-3\right|+\left|x-4\right|+\left|x-7\right|\)
\(A=\left|x-3\right|+\left|7-x\right|+\left|x-4\right|\)
Áp dụng BĐT trị tuyệt đối:
\(A\ge\left|x-3+7-x\right|+\left|x-4\right|\)
\(\Rightarrow A\ge4+\left|x-4\right|\ge4\)
\(\Rightarrow A_{min}=4\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\left(x-3\right)\left(7-x\right)\ge0\\x-4=0\end{matrix}\right.\) \(\Rightarrow x=4\)
Câu b đã giải bên dưới
Tìm số tự nhiên x thoả mãn.
b) 3x-2^4=5^3
\(3x-2^4=5^3\\ 3x-16=125\\ 3x=125+16=141\\ x=\dfrac{141}{3}=47\)
\(3x-2^4=5^3\\\Rightarrow3x-16=125\\\Rightarrow3x=125+16\\\Rightarrow3x=141\\\Rightarrow x=141:3\\\Rightarrow x=47\)