Giải hệ
\(\sqrt{x^3}-\sqrt{y^3}=8\sqrt{x}+2\sqrt{y}\)
\(x-3y=6\)
thánh nào help
Giải hệ
\(\sqrt{x^3}-\sqrt{y^3}=8\sqrt{x}+2\sqrt{y}\)
\(x-3y=6\)
thánh nào help
\(\Leftrightarrow\sqrt{x^3}-\sqrt{y^3}=-\left(\sqrt{y}-\sqrt{x}\right)\left(y+\sqrt{x}\sqrt{y}+x\right)\)
\(\Rightarrow8\sqrt{x+2\sqrt{y}}=8\sqrt{2\sqrt{y}+x}\)
\(\Rightarrow-\sqrt{y^3}-8\sqrt{2\sqrt{y}+x}+\sqrt{x^3}=0\)
\(\Rightarrow\sqrt{y}=\left(\sqrt{x^3}-8\sqrt{2\sqrt{y}+x}\right)^{\frac{1}{3}}\)
=>pt đc xác định dưới dạng hàm ẩn :\(\sqrt{x^3}-\sqrt{y^3}=8\sqrt{2\sqrt{y}+x}\)
a) Giải pt: \(x+2\sqrt{7-x}=2\sqrt{x-1}+\sqrt{-x^2+8x-7}+1\)
b)Giải hệ pt \(\left\{{}\begin{matrix}xy-y^2+2y-x-1=\sqrt{y-1}-\sqrt{x}\\3\sqrt{6-y}+3\sqrt{2x+3y-7}=2x+7\end{matrix}\right.\)
a.
ĐKXĐ: \(1\le x\le7\)
\(\Leftrightarrow x-1-2\sqrt{x-1}+2\sqrt{7-x}-\sqrt{\left(x-1\right)\left(7-x\right)}=0\)
\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x-1}-2\right)-\sqrt{7-x}\left(\sqrt{x-1}-2\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-\sqrt{7-x}\right)\left(\sqrt{x-1}-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=\sqrt{7-x}\\\sqrt{x-1}=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=7-x\\x-1=4\end{matrix}\right.\)
\(\Leftrightarrow...\)
b. ĐKXĐ: ...
Biến đổi pt đầu:
\(x\left(y-1\right)-\left(y-1\right)^2=\sqrt{y-1}-\sqrt{x}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x}=a\ge0\\\sqrt{y-1}=b\ge0\end{matrix}\right.\)
\(\Rightarrow a^2b^2-b^4=b-a\)
\(\Leftrightarrow b^2\left(a+b\right)\left(a-b\right)+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(b^2\left(a+b\right)+1\right)=0\)
\(\Leftrightarrow a=b\)
\(\Leftrightarrow\sqrt{x}=\sqrt{y-1}\Rightarrow y=x+1\)
Thế vào pt dưới:
\(3\sqrt{5-x}+3\sqrt{5x-4}=2x+7\)
\(\Leftrightarrow3\left(x-\sqrt{5x-4}\right)+7-x-3\sqrt{5-x}=0\)
\(\Leftrightarrow\dfrac{3\left(x^2-5x+4\right)}{x+\sqrt{5x-4}}+\dfrac{x^2-5x+4}{7-x+3\sqrt{5-x}}=0\)
\(\Leftrightarrow\left(x^2-5x+4\right)\left(\dfrac{3}{x+\sqrt{5x-4}}+\dfrac{1}{7-x+3\sqrt{5-x}}\right)=0\)
\(\Leftrightarrow...\)
Giải hệ\(\left\{{}\begin{matrix}xy-y^2+2y-x-1=\sqrt{y-1}-\sqrt{x}\\3\sqrt{6-y}+3\sqrt{2x+3y-7}=2x+7\end{matrix}\right.\)
Giải hệ phương trình: \(\left\{\begin{matrix} xy-y^2-x+2y=\sqrt{y-1}+1-\sqrt{x} - Hy Vũ
Giải hệ phuong trình:
\(\hept{\begin{cases}x^3+x=y^3+3y^2+4y+2\\\sqrt{x+6-4\sqrt{x+2}}+\sqrt{y+12-6\sqrt{y+3}}=1\end{cases}}\)
ĐK : \(x\ge-2;y\ge-3\)
pt (1) <=> \(x^3+x=\left(y+1\right)^3+\left(y+1\right)\)
<=> \(\left(y+1\right)^3-x^3+\left(y+1\right)-x=0\)
<=> \(\left(y+1-x\right)\left(\left(y+1\right)^2+\left(y+1\right)x+x^2+1\right)=0\)
<=> \(y+1-x=0\) vì \(\left(y+1\right)^2+\left(y+1\right)x+x^2+1>0\)dễ chứng minh.
<=> \(x=y+1\)(1')
pt (2) <=> \(\sqrt{\left(\sqrt{x+2}-2\right)^2}+\sqrt{\left(\sqrt{y+3}-3\right)^2}=1\)
<=> \(\left|\sqrt{x+2}-2\right|+\left|\sqrt{y+3}-3\right|=1\)(2')
Thế (1') vào (2') ta có: \(\left|\sqrt{y+3}-2\right|+\left|\sqrt{y+3}-3\right|=1\)
Có: \(\left|\sqrt{y+3}-2\right|+\left|\sqrt{y+3}-3\right|=\left|\sqrt{y+3}-2\right|+\left|3-\sqrt{y+3}\right|\ge1\)
Do đó: \(\left|\sqrt{y+3}-2\right|+\left|\sqrt{y+3}-3\right|=1\)<=> \(\left(\sqrt{y+3}-2\right)\left(3-\sqrt{y+3}\right)\ge0\)
<=> \(2\le\sqrt{y+3}\le3\)
<=> \(4\le y+3\le9\)
<=> \(1\le y\le6\)(tm)
Khi đó: x = y + 1 với mọi y thỏa mãn \(1\le y\le6\)
Vậy tập nghiệm \(S=\left\{\left(y+1;y\right):1\le y\le6\right\}\)
Giải hệ
\(\sqrt{x^3}-\sqrt{y^3}=8\sqrt{x}+2\sqrt{y}\)
\(x-3y=6\)
ai júp với
tui ko giúp được,em mới lớp ,em mà làm được là em là thiên tài bẩm sinh
Giải hệ phương trình\(\left\{{}\begin{matrix}x-3y-2+\sqrt{y\left(x-y-1\right)+x}=0\\3\sqrt{8-x}-\dfrac{4y}{\sqrt{y+1}}+1=x^2-14y-8\end{matrix}\right.\)
Giải hệ phương trình sau:
\(\left\{{}\begin{matrix}\sqrt{x^2+3x+2}-\sqrt{x+1}=2y\sqrt{y^2+1}+9-y-6y^2\\\sqrt{x^2+3x+2}+3\sqrt{x+1}=y\sqrt{y^2+1}-6+3y+4y^2\end{matrix}\right.\)
Giải hệ phương trình:
a) \(\left\{{}\begin{matrix}\sqrt{3y^2+13}-\sqrt{15-2x}=\sqrt{x+1}\\y^4-2x^2y+7y^2=\left(x+1\right)\left(8-x\right)\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\sqrt{x+y}-\sqrt{x-y}=2\\\sqrt{x^2+y^2+1}-\sqrt{x^2-y^2}=3\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}\sqrt{2x+y+1}-\sqrt{x+y}=3\\\sqrt{3\left(x+y\right)^2+1}+\sqrt{x-5}=5\end{matrix}\right.\)
giải hệ ạ
1. \(\left\{{}\begin{matrix}x\sqrt{2}-3y=1\\2x+y\sqrt{2}=-2\end{matrix}\right.\)
2. \(\left\{{}\begin{matrix}5x\sqrt{3}+y=2\sqrt{2}\\x\sqrt{6}-y\sqrt{2}=2\end{matrix}\right.\)
1: \(\left\{{}\begin{matrix}x\sqrt{2}-3y=1\\2x+y\sqrt{2}=-2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x-3\sqrt{2}\cdot y=\sqrt{2}\\2x+y\sqrt{2}=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-4\sqrt{2}\cdot y=\sqrt{2}+2\\2x+y\sqrt{2}=-2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=\dfrac{2+\sqrt{2}}{-4\sqrt{2}}=\dfrac{-\sqrt{2}-1}{4}\\2x=-2-y\sqrt{2}=-2+\sqrt{2}\cdot\dfrac{\sqrt{2}+1}{4}=\dfrac{-6+\sqrt{2}}{4}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=\dfrac{-\sqrt{2}-1}{4}\\x=\dfrac{-6+\sqrt{2}}{8}\end{matrix}\right.\)
2: \(\left\{{}\begin{matrix}5x\sqrt{3}+y=2\sqrt{2}\\x\sqrt{6}-y\sqrt{2}=2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}5x\sqrt{6}+y\sqrt{2}=4\\x\sqrt{6}-y\sqrt{2}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x\cdot\sqrt{6}=6\\x\sqrt{6}-y\sqrt{2}=2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{1}{\sqrt{6}}=\dfrac{\sqrt{6}}{6}\\y\sqrt{2}=x\sqrt{6}-2=1-2=-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{\sqrt{6}}{6}\\y=-\dfrac{\sqrt{2}}{2}\end{matrix}\right.\)