số nghiệm của bất phương trình: (n-1)c(n-3) < (n+1)p4/14*p3 trên đoạn [1;2020]
Cho hai bất phương trình: 2x +3 < 6-(3-4x) (1) và \(\frac{x-1}{3}\le\frac{x+14}{3}-x\)(2).
a) Giải các bất phương trình (1) và (2) và biểu diễn tập nghiệm của mỗi bất phương trình trên một trục số.
b) Tìm các giá trị nguyên của x thỏa mãn đồng thời cả hai bất phương trình trên?
giúp mik với đi
Chất điểm P đang dao động điều hoà trên đoạn thẳng MN, trên đoạn thẳng đó có bảy điểm theo đúng thứ tự M, P1,P2,P3,P4,P5, N với P3 là vị trí cân bằng. Biết rằng từ điểm M,cứ sau 0,25 s chất điểm lại qua các điểm P1,P2,P3,P4,P5, N. Tốc độ của nó lúc đi qua điểm P1 là 4π cm/s. Biên độ A bằng
A. 12 cm
B. 4 cm
C. 42 cm
D. 123 cm
Đáp án A
Chất điểm chuyển động chia đường tròn thành 12 cung, thời gian chuyển động trên mỗi cung tròn là 0,25 s.
→ chu kì dao động của chất điểm là T = 12.t = 12.0,25 = 3 s.
→ tần số góc ω = 2π/3 rad/s.
Chất điểm P đang dao động điều hoà trên đoạn thẳng MN, trên đoạn thẳng đó có bảy điểm theo đúng thứ tự M , P 1 , P 2 , P 3 , P 4 , P 5 , N với P 3 là vị trí cân bằng. Biết rằng từ điểm M,cứ sau 0,25 s chất điểm lại qua các điểm P 1 , P 2 , P 3 , P 4 , P 5 , N . Tốc độ của nó lúc đi qua điểm P 1 là 4π cm/s. Biên độ A bằng
A. 12 cm
B. 4 cm
C. 42 cm
D. 123 cm
Chất điểm P đang dao động điều hoà trên đoạn thẳng MN, trên đoạn thẳng đó có bảy điểm theo đúng thứ tự M, P 1 , P 2 , P 3 , P 4 , P 5 , N với P3 là vị trí cân bằng. Biết rằng từ điểm M,cứ sau 0,25 s chất điểm lại qua các điểm P 1 , P 2 , P 3 , P 4 , P 5 , N. Tốc độ của nó lúc đi qua điểm P1 là 4π cm/s. Biên độ A bằng
A. 123 cm
B. 42 cm
C. 12 cm
D. 4 cm
Nghiệm của bất phương trình: C n + 2 n - 1 + C n + 2 n > 5 2 A n 2 là số tự nhiên n
A. n>2
B. n ≥ 2
C. n>3
D. n ≥ 3
Nghiệm của bất phương trình: C n + 2 n − 1 + C n + 2 n > 5 2 A n 2 là số tự nhiên n :
A. n > 2
B. n ≥ 2
C. n > 3
D. n ≥ 3
Cho số tự nhiên N=p1.p2^2.p3^3.p4^4, trong đó p1, p2, p3, p4 là các số nguyên tố đôi một khác nhau. Số các ước số của N là?
Số các ước của N là:
(1 + 1)(2 + 1)(3 + 1)(4 + 1) = 120 (ước)
Đ/S:...
Số p4 có 5 ước số tự nhiên là 1 , p, p2 , p3 , p4
Ta có : 1 + p + p2 + p3 + p4 = n2 (n ∈ N)
Suy ra : 4n2 = 4p4 + 4p3 + 4p2 + 4p + 4 > 4p4 + 4p3 + p2 = (2p2 + p)2
Và 4n2 < 4p4 + p2 + 4 + 4p3 + 8p2 + 4p = (2p2 + p + 2)2.
Vậy : (2p2 + p)2 < (2n)2 < (2p2 + p + 2)2.
Suy ra :(2n)2 = (2p2 + p + 2)2 = 4p4 + 4p3 +5p2 + 2p + 1
vậy 4p4 + 4p3 +5p2 + 2p + 1 = 4p4 + 4p3 +4p2 +4p + 4 (vì cùng bằng 4n2 )
=> p2 - 2p - 3 = 0 => (p + 1) (p - 3) = 0
do p > 1 => p - 3 = 0 => p = 3
Bạn nào giải thích cho mình phần in đậm
Chỗ đấy phải là (2n)2 = (2p2 + p + 1)2
Chứng minh rằng:
a) Số các nghiệm tự nhiên của phương trình \(x_1+x_2+...+x_m=n\left(n,m\in N\cdot\right)\) là \(C^n_{m+n-1}\).
b) Số các nghiệm nguyên dương của phương trình \(x_1+x_2+...+x_m=n\left(m\le n;m,n\in N\cdot\right)\) là \(C^{m-1}_{n-1}\).
Em có tìm một số lời giải cho bài toán này nhưng vẫn không hiểu lắm, mong ai đó có lời giải chi tiết và dễ hiểu :)
Bài toán chia kẹo kinh điển đây mà.
Trước hết chúng ta đếm 1 chút theo kiểu lớp 1 lớp 2 gì đó: có 1 đoạn thẳng, cần chia đoạn thẳng ấy làm 3 phần, vậy cần chấm lên đoạn thẳng ấy mấy điểm? Câu trả lời rõ ràng là 2 điểm. Cần chia 1 con cá thành 3 khúc, ta cần 2 nhát cắt; cần ngăn 4 con cọp xếp hàng ngang để chúng đỡ cắn nhau, ta cần 3 vách ngăn. Hay để chia 1 đối tượng làm n phần, ta cần dùng n-1 vách ngăn để chia nó ra, Như thế này:
Bây giờ có số tự nhiên n, ta phân tích nó như sau:
\(n=1+1+1+...+1+1+1\)
Giả sử ta "vách ngăn" vào một vài vị trí giữa các số 1, kiểu thế này:
\(1+1+\left|1+1+1\right|+1+|1+1+...+1\)
Rõ ràng với 3 vách ngăn trên, ta chia n thành 3+1=4 phần, mỗi phần đều có giá trị nguyên dương, lần lượt là 2,3,1,n-6.
Bây giờ cần chia dãy \(1+1+...+1\) trên thành m phần, vậy cần đặt bao nhiêu vách ngăn? Cũng như ban đầu đã phân tích, ta cần đặt \(m-1\) tấm vách ngăn.
Ta có bao nhiêu vị trí để đặt \(m-1\) vách ngăn nói trên? Có n số 1, ta sẽ có \(n-1\) vị trí đặt vách ngăn, sao cho giữa 2 vách ngăn có ít nhất một số 1 (hay giữa 2 vách ngăn luôn là 1 giá trị nguyên dương).
Tóm lại, để chia dãy tổng \(1+1+...+1\) (n số hạng) thành m phần, sao cho mỗi phần chứa ít nhất một số 1, ta cần đặt \(m-1\) tấm vách ngăn vào \(n-1\) vị trí khả dĩ. Như vậy, ta có \(C_{n-1}^{m-1}\) cách.
Hiển nhiên, giá trị của mỗi phần (tức là tổng các số 1 trong phần đó) chính là giá trị nghiệm \(x_i\) của pt \(\sum\limits^m_{i=1}x_i=n\). Vậy pt có \(C_{n-1}^{m-1}\) nghiệm nguyên dương.
//Bay giờ tới nghiệm tự nhiên thì đơn giản, số tự nhiên khác số nguyên dương đúng 1 số 0, bây giờ ta "loại" nó đi là ra bài toán bên trên. Bằng cách đặt \(y_1=x_1+1;y_2=x_2+1...;y_m=x_m+1\), ta đảm bảo \(y_i\) luôn nguyên dương khi \(x_i\) tự nhiên.
Khi đó:
\(y_1+y_2+...+y_m=\left(x_1+1\right)+\left(x_2+1\right)+...+\left(x_m+1\right)\)
\(=\left(x_1+x_2+...+x_m\right)+m=n+m\)
Quay về bài trên, ta có pt \(y_1+y_2+...+y_m=n+m\) có \(C_{n+m-1}^{m-1}\) nghiệm.
Ứng với mỗi \(y_i\) cho đúng 1 giá trị \(x_i=y_i-1\) tương ứng, do đó pt:
\(\sum\limits^m_{i=1}x_i=n\) có \(C_{n+m-1}^{m-1}\) nghiệm tự nhiên
Công thức đầu của em có vẻ bị sai :D