Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Anime 18
Xem chi tiết
Anime 18
2 tháng 5 2019 lúc 19:36

giúp mik với đi mik ko hiểu câu b

Hoàng Đức Long
Xem chi tiết
Vũ Thành Nam
6 tháng 2 2017 lúc 17:20

 

Đáp án A

Chất điểm chuyển động chia đường tròn thành 12 cung, thời gian chuyển động trên mỗi cung tròn là 0,25 s.

→ chu kì dao động của chất điểm là T = 12.t = 12.0,25 = 3 s.

tần số góc ω = 2π/3 rad/s.

Hoàng Đức Long
Xem chi tiết
Vũ Thành Nam
24 tháng 12 2017 lúc 8:45

Hoàng Đức Long
Xem chi tiết
Vũ Thành Nam
6 tháng 1 2018 lúc 14:50

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
30 tháng 7 2018 lúc 15:58

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
8 tháng 8 2019 lúc 13:49

Đáp án B.

lê phát minh
Xem chi tiết
Nobita Kun
24 tháng 1 2016 lúc 13:28

Số các ước của N là:

(1 + 1)(2 + 1)(3 + 1)(4 + 1) = 120 (ước)

Đ/S:...

Useless people
Xem chi tiết
Nguyễn Thành Long
21 tháng 3 2022 lúc 14:28

Chỗ đấy phải là (2n)2 =  (2p+ p + 1)2 

Trần Tuấn Hoàng
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 1 2024 lúc 10:54

Bài toán chia kẹo kinh điển đây mà.

Trước hết chúng ta đếm 1 chút theo kiểu lớp 1 lớp 2 gì đó: có 1 đoạn thẳng, cần chia đoạn thẳng ấy làm 3 phần, vậy cần chấm lên đoạn thẳng ấy mấy điểm? Câu trả lời rõ ràng là 2 điểm. Cần chia 1 con cá thành 3 khúc, ta cần 2 nhát cắt; cần ngăn 4 con cọp xếp hàng ngang để chúng đỡ cắn nhau, ta cần 3 vách ngăn. Hay để chia 1 đối tượng làm n phần, ta cần dùng n-1 vách ngăn để chia nó ra, Như thế này:

loading...

Bây giờ có số tự nhiên n, ta phân tích nó như sau:

\(n=1+1+1+...+1+1+1\)

Giả sử ta "vách ngăn" vào một vài vị trí giữa các số 1, kiểu thế này:

\(1+1+\left|1+1+1\right|+1+|1+1+...+1\)

Rõ ràng với 3 vách ngăn trên, ta chia n thành 3+1=4 phần, mỗi phần đều có giá trị nguyên dương, lần lượt là 2,3,1,n-6. 

Bây giờ cần chia dãy \(1+1+...+1\) trên thành m phần, vậy cần đặt bao nhiêu vách ngăn? Cũng như ban đầu đã phân tích, ta cần đặt \(m-1\)  tấm vách ngăn.

Ta có bao nhiêu vị trí để đặt \(m-1\) vách ngăn nói trên? Có n số 1, ta sẽ có \(n-1\) vị trí đặt vách ngăn, sao cho giữa 2 vách ngăn có ít nhất một số 1 (hay giữa 2 vách ngăn luôn là 1 giá trị nguyên dương).

Tóm lại, để chia dãy tổng \(1+1+...+1\) (n số hạng) thành m phần, sao cho mỗi phần chứa ít nhất một số 1, ta cần đặt \(m-1\) tấm vách ngăn vào \(n-1\) vị trí khả dĩ. Như vậy, ta có \(C_{n-1}^{m-1}\) cách.

Hiển nhiên, giá trị của mỗi phần (tức là tổng các số 1 trong phần đó) chính là giá trị nghiệm \(x_i\) của pt \(\sum\limits^m_{i=1}x_i=n\). Vậy pt có \(C_{n-1}^{m-1}\) nghiệm nguyên dương.

//Bay giờ tới nghiệm tự nhiên thì đơn giản, số tự nhiên khác số nguyên dương đúng 1 số 0, bây giờ ta "loại" nó đi là ra bài toán bên trên. Bằng cách đặt \(y_1=x_1+1;y_2=x_2+1...;y_m=x_m+1\), ta đảm bảo \(y_i\) luôn nguyên dương khi \(x_i\) tự nhiên.

Khi đó:

\(y_1+y_2+...+y_m=\left(x_1+1\right)+\left(x_2+1\right)+...+\left(x_m+1\right)\)

\(=\left(x_1+x_2+...+x_m\right)+m=n+m\)

Quay về bài trên, ta có pt \(y_1+y_2+...+y_m=n+m\) có \(C_{n+m-1}^{m-1}\) nghiệm. 

Ứng với mỗi \(y_i\) cho đúng 1 giá trị \(x_i=y_i-1\) tương ứng, do đó pt:

\(\sum\limits^m_{i=1}x_i=n\) có \(C_{n+m-1}^{m-1}\) nghiệm tự nhiên

Công thức đầu của em có vẻ bị sai :D