tìm điều kiện xác định của bất phương trình \(\sqrt{2-x}+x< 2+\sqrt{1-2x}\)
Tìm điều kiện xác định của bất phương trình:
\(\dfrac{\sqrt{\text{x - 2}}}{\text{x}+1}-\sqrt{\text{4 - x}}\ge0\)
ĐKXĐ: \(\left\{{}\begin{matrix}x-2>=0\\4-x>=0\\x+1< >0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2< =x< =4\\x< >-1\end{matrix}\right.\Leftrightarrow x\in\left[2;4\right]\)
Tìm điều kiện xác định của phương trình sau: \(\sqrt{5x-1}+\sqrt{x+2}=7-x\).
ĐKXĐ: `{(5x-1>=0),(x+2>=0),(7-x>=0):}`
`<=>{(x>=1/5),(x>=-2),(x<=7):}`
`<=>1/5 <=x<=7`
`ĐKXĐ: {(5x - 1 >= 0),(x+2 >=0),(7-x >=0):}`
`<=> {(x >= 1/5),(x>= -2),(x <=7):}`
`<=> 1/5 <= x <= 7`
Bài 1: Cho bất phương trình \(4\sqrt{\left(x+1\right)\left(3-x\right)}\le x^2-2x+m-3\). Xác định m để bất phương trình nghiệm \(\forall x\in[-1;3]\)
Bài 2: Cho bất phương trình \(x^2-6x+\sqrt{-x^2+6x-8}+m-1\ge0\). Xác định m để bất phương trình nghiệm đúng \(\forall x\in[2;4]\)
Tìm điều kiện xác định
\(\sqrt{x^2-2x+1}+\sqrt{x^2-6x+9}=1\)
\(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=3\)
a: ĐKXĐ: \(x\in R\)
b: ĐKXĐ: \(x\in R\)
điều kiện xác đinh của bất phương trình
\(\sqrt{1-2|x|}>\frac{1}{\sqrt{|}x|-4}+|x|\)là ?
Điều kiện xác định bất phương trình: \(\sqrt{x}\) - 3x \(\le\) 0 là
Điều kiện:`x>=0`
lời giải bpt:
`sqrtx-3x<=0`
`<=>sqrtx<=3x`
`<=>x<=9x^2`
`<=>x(9x-1)>=0`
`<=>9x-1>=0(do \ x>=0)`
`<=>x>=1/9`
Vậy ...
Tìm điều kiện xác định của biểu thức : B = \(\sqrt{x^2-3x}\) + \(\sqrt{\dfrac{x-5}{x-1}}\)- \(\sqrt[3]{2x-1}\)
Tìm điều kiện xác định cuả phương trình:
\(\sqrt{4x+2}=\sqrt{x^2+4x+1}\)
Mình làm thử, bạn xem có đúng hông nha!
\(ĐKXĐ:\hept{\begin{cases}4x+2\ge0\\x^2+4x+1\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge-\frac{1}{2}\\\left(x+2\right)^2-3\ge-3\Leftrightarrow x=-2\end{cases}\Leftrightarrow}x\ge-\frac{1}{2}}\)
Mình giải thử lun nha!
\(\sqrt{4x+2}=\sqrt{x^2+4x+1}\) (1)
Bình phương cả 2 vế của pt, ta được:
\(\left(1\right)\Leftrightarrow\left(\sqrt{4x+2}\right)^2=\left(\sqrt{x^2+4x+1}\right)^2\)
\(\Leftrightarrow4x+2=x^2+4x+1\)
\(\Leftrightarrow x^2-1=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x-1=0\\x+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\left(\text{nhận }\right)\\x=-1\left(\text{loại}\right)\end{cases}}}\)
Vậy: \(S=\left\{1\right\}\)
(Nếu đúng thì tíck cho mìk vs nhé!)
Tìm điều kiện xác định của các biểu thức sau:
$\sqrt{x^{2} - 4x + 3}$
$\sqrt{x^{2} - 7x + 12}$
$\sqrt{x^{2} - 9x + 20}$
$\sqrt{-x^{2} + 2x - 1}$
a: ĐKXĐ: (x-1)(x-3)>=0
=>x>=3 hoặc x<=1
b: ĐKXĐ: (x-4)(x-3)>=0
=>x>=4 hoặc x<=3
c: ĐKXĐ: (x-5)(x-4)>=0
=>x>=5 hoặc x<=4