cho tam giác MNPcóMN=MP.tia phân giác của góc M cắt NP tại I.chứng minh
a.:NI=IP
b,:MI vuông góc NP
Cho tam giác MNP vuông tại M.Kẻ MH vuông góc với NP(K thuộc NP).Tia phân giác của góc PMK cắt NP tại I.Chứng minh NM=NI
\(\widehat{KIM}+\widehat{KMI}=90^o\)(hai góc phụ nhau)
\(\widehat{IMN}+\widehat{IMP}=90^o\)(hai góc phụ nhau)
\(\widehat{KMI}=\widehat{IMP}\)(vì \(MI\)là tia phân giác của \(\widehat{PMK}\))
Suy ra \(\widehat{IMN}=\widehat{KIM}\).
Xét tam giác \(NIM\)có \(\widehat{IMN}=\widehat{KIM}\)(cmt)
suy ra \(\Delta NIM\)cân tại \(N\)
suy ra \(NI=NM\).
Cho tam giác MNP có MN = MP. Tia phân giác của góc M cắt NP ở I. Chứng minh:
a) NI = IP
b) MI vuông góc NP
Ta có hình vẽ
a/ Xét tam giác MNI và tam giác MPI có:
MN = MP (GT)
\(\widehat{NMI}\)=\(\widehat{PMI}\) (GT)
MI: cạnh chung
=> tam giác MNI = tam giác MPI (c.g.c)
=> NI = IP (2 cạnh tương ứng)
b/ Ta có: tam giác MNI = tam giác MPI (câu a)
=> \(\widehat{MIN}\)=\(\widehat{MIP}\) (2 góc tương ứng)
Mà \(\widehat{MIN}\)+\(\widehat{MIP}\)=1800 (kề bù)
=> \(\widehat{MIN}\)=\(\widehat{MIP}\)=900
=> MI \(\perp\)NP (đpcm)
Cho tam giác MNP vuông tại M. Kẻ MK vuông góc với NP ( K thuộc NP ). Tia phân giác của góc PMK cắt NP tại I. Chứng minh NM = NI.
Ta có:
\(\widehat{NMK}=\widehat{MPN}+\widehat{MNK}\left(=90^0\right)\)
Vì MI là tia phân giác \(\widehat{KMP}\)
=> \(\widehat{NMI}=\widehat{NMK}+\widehat{KMI}=\widehat{MPN}+\widehat{IMP}=\widehat{MIN}\)
=> Tam giác NMI cân tại N
=> NM = NI ( đpcm )
Cho tam giác MNP ( góc M= 90°), MH vuông góc với NP tại H, MN=9, MP=12. a, chứng minh tam giác HNM đồng dạng vs tam giác MNP b, tính NP, MH, NH, HP c, gọi MI là phân giác góc M. Tính NI, IP
a, xét tam giá HNM và tam giác MNP có chung :
góc MNP
cạnh MN
cạnh NI của tam giác HNM nằm trên cạnh NP của tam giác MNP
=> tam giác HNM đồng dạng MNP (c-g-c)
b,
áp dụng đ/l pytago vào tam giác vuông MNP :
=>NP=15cm
MH.NP =NM.MP
MH.15=9.12
=>MH=7,2cm
áp dụng đl pytago vào tam giác vuông MNH ( NHM = 90\(^o\)):
=>NH=5,4cm
HP=NP-NH
HP=15-5,4=9,6cm
c,
vì MI là phân giác của góc M
=> MI là trung tuyến của tam giác MNP nên:
NI=IP
mà NI+IP=15cm
=> NI=IP =7,5cm
Cho tam giác MNP có góc M= 90° Góc N = 60° MN= 3cm NI là tia phân giác của góc N IK vuông góc với NP tại K a Chứng minh tam giác MNI=tam giác KNI b tam giác MNK là tam giác gì c so sánh MI và IP d Tính NP và MP
a: Xét ΔMNI vuông tại M và ΔKNI vuông tại K có
NI chung
\(\widehat{MNI}=\widehat{KNI}\)
Do đó: ΔMNI=ΔKNI
b: Ta có: ΔMNI=ΔKNI
nên NM=NK
Xét ΔNMK có NM=NK
nên ΔNMK cân tại N
mà \(\widehat{MNK}=60^0\)
nên ΔNMK đều
c: Ta có: ΔMNI=ΔKNI
nên MI=IK
mà IK<IP
nên MI<IP
d: Xét ΔMNP vuông tại M có
\(NP=\dfrac{MN}{\sin30^0}\)
\(=3:\dfrac{1}{2}=6\left(cm\right)\)
Áp dụng định lí Pytago vào ΔMNP vuông tại M, ta được:
\(MN^2+MP^2=NP^2\)
\(\Leftrightarrow MP=3\sqrt{3}\left(cm\right)\)
Cho tam giác MNP có góc M= 90° Góc N = 60° MN= 3cm NI là tia phân giác của góc N IK vuông góc với NP tại K a. Chứng minh tam giác MNI=tam giác KNI b. tam giác MNK là tam giác gì c. so sánh MI và IP d. Tính NP và MP
a: Xét ΔMNI vuông tại M và ΔKNI vuông tại K có
NI chung
\(\widehat{MNI}=\widehat{KNI}\)
Do đó: ΔMNI=ΔKNI
b: Ta có: ΔMNI=ΔKNI
nên NM=NK
Xét ΔMNK có NM=NK
nên ΔMNK cân tại N
Xét ΔMNK cân tại N có \(\widehat{MNK}=60^0\)
nên ΔMNK đều
c: Ta có: ΔMNI=ΔKNI
nên MI=IK
mà IK<IP
nên MI<IP
d: Xét ΔMNP vuông tại M có
\(NP=\dfrac{MN}{\sin30^0}\)
\(=3:\dfrac{1}{2}=6\left(cm\right)\)
Áp dụng định lí Pytago vào ΔMNP vuông tại M, ta được:
\(MN^2+MP^2=NP^2\)
\(\Leftrightarrow MP=3\sqrt{3}\left(cm\right)\)
cho tam giác MNP cân tại M coa MN=MP=13cm, NP=10cm. kẻ MI vuông góc với NP (IϵNP)
A, chứng minh rằng: IN=IP
B,tính độ dài MI
C, kẻ IH vuông góc với MN (HϵMN), IK vuông góc với MP (KϵMP).chứng minh IH=IK
Xét tam giác MNI và MPI có
MI là cạnh chung
MN = MP( tam giác MNP cân)
Góc MIN = góc MIP = 90°
=> Tam giác MIN = tam giác MIP( cgv - ch)
IN = IP = 5 cm nên I là trung điểm của NP
b) Tam giác MIN vuông tại I có
NI2 + MI2 = MN2( định lí Pytago)
MI2 + 52 = 142
MI2 + 25 = 196
MI2 = 144
MI=12
c) Xét tam giác PHI và PKI có
MI là cạnh chung
Góc HMI = KMI ( tam giác NMI = PMI )
Góc IHM = IKM = 90°
=》 Tam giác HMI = KMI ( ch - gn)
=》IH=IK
Cho tam giác MNP vuông tại M, vẽ tia phân giác NI. Kẻ ME vuông góc với NI, đường thẳng ME cắt NP ở K. Đường thẳng qua M và song song với IK cắt NI ở H, cắt NP ở F
Chứng minh a) NM=NP
b) Mf vg góc với NP
c KH//MP
Đề sai rồi PN là cạnh huyền mà sao = MN được
Cho tam giác MNP cân tại M . MI là đường trung tuyến của tam giác MNP. kẻ NK vuông góc MP và cắt MI tại O.
chứng minh MI vuông góc np.
C/m PO vuông góc MN tại J.
C/m PK=NJ.
C/m Jk song song NP.
Kẻ phân giác góc MNO cắt MO tại H tính số đo góc MKH