Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
zun zun
Xem chi tiết
Cô Hoàng Huyền
30 tháng 5 2016 lúc 9:33

Cô làm câu b thôi nhé :)

Ta có hệ \(\hept{\begin{cases}mx+4y=10-m\\x+my=4\end{cases}}\Leftrightarrow\hept{\begin{cases}m\left(4-my\right)+4y=10-m\\x=4-my\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(4-m^2\right)y=10-5m\left(1\right)\\x=4-my\end{cases}}\)

Với \(4-m^2=0\Leftrightarrow m=2\) hoặc \(m=-2\)

Xét m =2, phương trình (1) tương đương 0.x = 0. Vậy hệ phương trình có vô số nghiệm dạng \(\left(4-2t;t\right)\)

Xét m = -2, phương trình (1) tương đương 0.x = 20. Vậy hệ phương trình vô nghiệm.

Với \(4-m^2\ne0\Leftrightarrow m\ne2\) và \(m\ne-2\), phương trình (1) tương đương \(y=\frac{10-5m}{4-m^2}=\frac{5}{2+m}\)

Từ đó : \(x=\frac{8-m}{2+m}\)

Kết luận: 

+ m = 2, hệ phương trình có vô số nghiệm dạng \(\left(4-2t;t\right)\)

+ m = - 2, hệ phương trình vô nghiệm.

\(m\ne2;m\ne-2\) hệ có 1 nghiệm duy nhất \(\hept{\begin{cases}x=\frac{8-m}{2+m}\\y=\frac{5}{2+m}\end{cases}}\)

Chúc em học tập tốt :)

Nguyễn Anh Khoa
9 tháng 12 2021 lúc 20:14

undefined
hehe
Hỏi từ lâu nhưng bây giờ em trả lời lại cho vui

Khách vãng lai đã xóa
Thanh Vân
Xem chi tiết
Nguyễn VŨ Huyền Anh
Xem chi tiết
Lê Thu Trang
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 12 2021 lúc 14:42

a: Để phương trình có nghiệm duy nhất thì \(\left(m-3\right)\left(m+2\right)< >0\)

hay \(m\notin\left\{3;-2\right\}\)

Để phương trình vô nghiệm thì \(\left\{{}\begin{matrix}\left(m-3\right)\left(m+2\right)=0\\\left(m-3\right)\left(m-1\right)< >0\end{matrix}\right.\Leftrightarrow m=-2\)

Để phương trình có vô số nghiệm thì m=3

Trương Anh Tú
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 1 2023 lúc 10:02

2mx+y=2 và 8x+my=m+2

=>y=2-2mx và 8x+m(2-2mx)=m+2

=>\(\left\{{}\begin{matrix}8x+2m-2m^2x-m-2=0\\y=-2mx+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\left(-2m^2+8\right)=-m+2\\y=-2mx+2\end{matrix}\right.\)

=>2(m-2)(m+2)x=m-2 và y=-2mx+2

Nếu m=2 thì hệpt có vô số nghiệm

Nếu m=-2 thìhệ pt vn

Nếu m<>2; m<>-2 thì hệ phương trình có nghiệm duy nhất là:

\(\left\{{}\begin{matrix}x=\dfrac{1}{2\left(m+2\right)}\\y=-2m\cdot\dfrac{1}{2\left(m+2\right)}+2=-\dfrac{m}{m+2}+2=\dfrac{-m+2m+4}{m+2}=\dfrac{m+4}{m+2}\end{matrix}\right.\)

Lê Thu Trang
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 12 2021 lúc 21:10

a: Để phương trình có nghiệm duy nhất thì \(\left(m-3\right)\left(m+2\right)\ne0\)

hay \(m\notin\left\{3;-2\right\}\)

Để phương trình có vô số nghiệm thì \(m-3=0\)

hay m=3

Để phương trình vô nghiệm thì \(\left\{{}\begin{matrix}\left(m-3\right)\left(m+2\right)=0\\m^2-4m+3< >0\end{matrix}\right.\Leftrightarrow m=-2\)

Nguyễn Thu Hà
Xem chi tiết
alibaba nguyễn
11 tháng 1 2017 lúc 8:16

\(\hept{\begin{cases}2m^2x+3\left(m-1\right)y=3\\m\left(x+y\right)-2y=2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2m^2x+3\left(m-1\right)y=3\\y\left(m-2\right)=2-mx\end{cases}}\)

Với m = 2 thì hệ trở thành

\(\hept{\begin{cases}8x+3y=3\\2-2x=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=\frac{-5}{3}\end{cases}}\)

Với \(m\ne2\)thì

\(\Leftrightarrow\hept{\begin{cases}2m^2x+3\left(m-1\right).\frac{2-mx}{\left(m-2\right)}=3\left(1\right)\\y=\frac{2-mx}{\left(m-2\right)}\left(2\right)\end{cases}}\)

Từ (1) ta có

\(\left(2m^3-7m^2+3m\right)x=-3m\)

Với \(\hept{\begin{cases}2m^3-7m^2+3m=0\\-3m=0\end{cases}}\Leftrightarrow m=0\)

Thì phương trình có vô số nghiệm (x,y) thõa y = - 1; x tùy ý

Với \(\hept{\begin{cases}2m^3-7m^2+3m=0\\-3m\ne0\end{cases}}\Leftrightarrow\orbr{\begin{cases}m=\frac{1}{2}\\m=3\end{cases}}\)

Thì hệ pt vô nghiệm

Với \(\hept{\begin{cases}2m^3-7m^2+3m\ne0\\-3m\ne0\end{cases}}\Leftrightarrow m\ne0;0,5;3\)

Thì hệ có nghiệm là

\(\hept{\begin{cases}x=\frac{3-3\left(m-1\right).\frac{2-mx}{\left(m-2\right)}}{2m^2}\\y=\frac{2-mx}{\left(m-2\right)}\end{cases}}\)

alibaba nguyễn
10 tháng 1 2017 lúc 22:49

\(\hept{\begin{cases}2m^2x+3\left(m-1\right)y=3\\m\left(x+y\right)-2y=2\end{cases}}\)

Với m = 2 thì e giải nhé

Với m khác 2 thì

\(\Leftrightarrow\hept{\begin{cases}2m^2x+3\left(m-1\right).\frac{2-mx}{m-2}=3\left(1\right)\\y=\frac{2-mx}{m-2}\left(2\right)\end{cases}}\)

Xét (1) quy đồng rồi chuyển cái có x sang 1 vế phần còn lại sang 1 vế. Rồi biện luận nhé 

amidig
Xem chi tiết
Phạm Đôn Lễ
11 tháng 10 2018 lúc 19:18

2x+6+6x+3=20

8x=20-6-3=11

x=11/8

minh phượng
11 tháng 10 2018 lúc 19:19

\(8x-11=0\)

\(8x=11\)

\(x=\frac{11}{8}\)

học tốt

ko chắc nhé

Phạm Quang Long
11 tháng 10 2018 lúc 19:19

\(2\left(x+3\right)+3\left(2x+1\right)=20\)

\(2x+2.3+3.2x+3.1=20\)

\(2x+6+6x+3=20\)

\(\left(2x+6x\right)+\left(6+3\right)=20\)

\(8x+9=20\)

\(8x=20-9=11\)

\(\Rightarrow x=\frac{11}{8}\)

học tốt nha

huy tạ
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 3 2022 lúc 23:16

\(x^2-2\left(m+1\right)x+2m+10=10\)

\(\Leftrightarrow x^2-\left(2m+2\right)x+2m=0\)

\(\text{Δ}=\left(2m+2\right)^2-4\cdot2m=4m^2+8m+4-8m=4m^2+4>0\)

Do đó: Phương trình luôn có hai nghiệm phân biệt

Nguyễn Việt Lâm
5 tháng 3 2022 lúc 23:19

\(\Delta'=\left(m+1\right)^2-\left(2m+10\right)=m^2-9\)

- Với \(m^2-9< 0\Leftrightarrow-3< m< 3\) pt vô nghiệm

- Với \(m^2-9=0\Rightarrow\left[{}\begin{matrix}m=3\\m=-3\end{matrix}\right.\) pt có nghiệm kép tương ứng \(\left[{}\begin{matrix}x=4\\x=-2\end{matrix}\right.\)

- Với \(m^2-9>0\Rightarrow\left[{}\begin{matrix}m>3\\m< -3\end{matrix}\right.\) pt có 2 nghiệm pb:

\(\left\{{}\begin{matrix}x_1=m+1-\sqrt{m^2-9}\\x_2=m+1+\sqrt{m^2-9}\end{matrix}\right.\)