Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tuyết Như Bùi Thân
Xem chi tiết

Bài 1:

\(a,A=2x^2+2x+1=\left(x^2+2x+1\right)+x^2=\left(x+1\right)^2+x^2\\ Mà:\left(x+1\right)^2\ge0\forall x\in R\\ \Rightarrow\left(x+1\right)^2+x^2>0\forall x\in R\\ Vậy:A>0\forall x\in R\)

Nguyễn Lê Phước Thịnh
22 tháng 7 2023 lúc 10:21

2:

a: =-(x^2-3x+1)

=-(x^2-3x+9/4-5/4)

=-(x-3/2)^2+5/4 chưa chắc <0 đâu bạn

b: =-2(x^2+3/2x+3/2)

=-2(x^2+2*x*3/4+9/16+15/16)

=-2(x+3/4)^2-15/8<0 với mọi x

Bài 1:

\(B=4+x^2+x=\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{15}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{15}{4}\ge\dfrac{15}{4}\forall x\in R\\ Vậy:B>0\forall x\in R\)

Phạm Thị Thu Uyên
Xem chi tiết
vũ tiền châu
6 tháng 1 2018 lúc 12:12

ta có BĐT cần chứng minh 

<=>\(\frac{2}{3}a^2-\frac{4}{3}ab+\frac{2}{3}b^2\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)

dấu = xảy ra <=>a=b

^_^

Phạm Thị Thu Uyên
6 tháng 1 2018 lúc 18:10

cảm ơn bạn vũ tiền châu nhiều nhé

vũ tiền châu
6 tháng 1 2018 lúc 18:18

uh, kcj ^_^ 

M Trangminsu
Xem chi tiết
Nguyễn Huế Anh
14 tháng 9 2017 lúc 19:51

Biến đổi vế phải:

(a3+b3)(a2+b2)-(a+b)=(a5+b5)+(a3b2+a2b3)-(a+b)=a5+b5+a2b2(a+b)-(a+b)

Thay ab=1 vào ta được:

a5+b5+(a+b)-(a+b)=a5+b5

Sau khi biến đổi ta thấy vế phải bằng vế trái.Vậy đẳng thức đã được chứng minh

Nguyễn Quang Huy
Xem chi tiết
ngoc lan
Xem chi tiết
Mạnh Hùng Phan
15 tháng 4 2019 lúc 21:13

1. (a+b)^2 ≥ 4ab

<=> a2+2ab+b2≥ 4ab

<=> a2+2ab+b2-4ab≥ 0

<=> a2-2ab+b2≥ 0

<=> (a-b)^2 ≥ 0 ( luôn đúng )

Mạnh Hùng Phan
15 tháng 4 2019 lúc 21:18

2. a^2 + b^2 + c^2 ≥ ab + bc + ca

<=> 2a^2 + 2b^2 + 2c^2 ≥ 2ab + 2bc + 2ca

<=> 2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ca ≥ 0

<=> (a^2- 2ab+b^2) + (b^2-2bc+c^2) + (c^2-2ca+a^2) ≥ 0

<=> (a-b)^2 + (b-c)^2 + (c-a)^2 ≥ 0 ( luôn đúng)

Mạnh Hùng Phan
15 tháng 4 2019 lúc 21:20

4. Tương tự 3

Tư Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 1 2022 lúc 23:00

1: \(\Leftrightarrow a^5-a^4b+b^5-ab^4>=0\)

\(\Leftrightarrow a^4\left(a-b\right)-b^4\left(a-b\right)>=0\)

\(\Leftrightarrow\left(a-b\right)^2\cdot\left(a+b\right)\cdot\left(a^2+b^2\right)>=0\)(luôn đúng khi a,b dương)

Lê Huy Hoàng
Xem chi tiết
Huỳnh Kiên
23 tháng 2 2022 lúc 15:07

\(a^2+b^2+3>ab+a+b\)

\(\Leftrightarrow2\left(a^2+b^2+3\right)>2\left(ab+a+b\right)\)

\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(a^2-2ab+b^2\right)+4>0\)

\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(a-b\right)^2+4>0\) \(\forall a,b\)

Vậy \(a^2+b^2+3>ab+a+b\forall a,b\)

khoimzx
Xem chi tiết
Nguyễn Việt Lâm
24 tháng 2 2020 lúc 8:19

a/ Biến đổi tương đương:

\(\Leftrightarrow3a^2-3ab+3b^2\ge a^2+ab+b^2\)

\(\Leftrightarrow2\left(a^2-2ab+b^2\right)\ge0\)

\(\Leftrightarrow2\left(a-b\right)^2\ge0\) (luôn đúng)

b/ \(\frac{a^3}{a^2+ab+b^2}=a-\frac{ab\left(a+b\right)}{a^2+ab+b^2}\ge a-\frac{ab\left(a+b\right)}{3\sqrt[3]{a^2.ab.b^2}}=a-\frac{a+b}{3}=\frac{2a}{3}-\frac{b}{3}\)

Tương tự: \(\frac{b^3}{b^2+bc+c^2}\ge\frac{2b}{3}-\frac{c}{3}\) ; \(\frac{c^3}{c^2+ca+a^2}\ge\frac{2c}{3}-\frac{a}{3}\)

Cộng vế với vế ta có đpcm

Khách vãng lai đã xóa
Cúc Nguyễn
Xem chi tiết