cho tam giác ABC , có A(-5;6) , trực tâm H(-3;2), M(0;1) là trung điểm BC . tổng hoành đọ và tung đọ của tâm đường tròn ngoai tiếp tam giác abc
A5
B2
C3
D4
Câu 1:
1) Cho tam giác ABC có góc A = góc C-10độ; góc B=góc C + 10độ. Tính các góc của tam giác ABC?
2) Cho tam giác ABC có góc B= 7/6 góc C; góc A= 5/6 góc C. Tính các góc của tam giác ABC?
3) cho tam giác ABC có góc A= 2. Góc B ; góc B = góc C . tính các góc của tam giác ABC?
4) Cho tam giác ABC có góc A= 5.góc C; góc B= 2.góc C. tínhcác góc của tam giác ABC?
bài 2:cho tam giác ABC có A+B-2C=27 độ và A+3C=273 độ.So sánh các cạnh trong tam giác ABC
bài 3:cho tam giác ABC có C-3B-2A=-3 độ và 5B-2A=16 độ. Tính các góc từ đó so sánh các cạnh trong tam giác ABC
Mình cần gấp ạ....
1)Cho tam giác ABC cân tại A có AB=6 cm,BC=4 cm.Tính các góc trong tam giác ABC.
2)Cho tam giác ABC vuông tại A có góc B=50 độ,BC=5 cm.Ở phía ngoài tam giác ABC,vẽ tam giác vuông ADC có góc CAD=35 độ.Tính chu vi tam giác ABC và chu vi tam giác ADC
Bài 2 : Cho tam giác ABC có AB=3cm; AC= 4cm; BC= 5cm . So sánh các góc của tam giác ABC
Bài 3 :Cho tam giác ABC có góc B=60 độ ; góc C = 40 độ . So sánh các cạnh của tam giác ABC
Bài 4 : Cho tam giác ABC có AB=5cm ; AC= 12 cm ; BC=13 cm
a) Tam giác ABC là tam giác gì ?
b) So sánh các góc của tam giác ABC
Bài 5 : Cho tam giác ABC vuông tại A có AB=10cm ; AC= 24 cm
a) Tính độ dài cạnh BC=?
b) Tam giác ABC là tam giác gì ?
bài 2:
ta có: AB<AC<BC(Vì 3cm<4cm<5cm)
=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)
Bài 3:
*Xét tam giác ABC, có:
góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)
hay góc A+60 độ +40 độ=180độ
=> góc A= 180 độ-60 độ-40 độ.
=> góc A=80 độ
Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)
=> BC>AC>AB( Các cạnh và góc đối diện trong tam giác)
bài 2:
ta có: AB <AC <BC (Vì 3cm <4cm <5cm)
=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)
Bài 3:
*Xét tam giác ABC, có:
góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)
hay góc A+60 độ +40 độ=180độ
=> góc A= 180 độ-60 độ-40 độ.
=> góc A=80 độ
Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)
=> BC>AC>AB( Các cạnh và góc đối diện trong tam giác)
HT mik làm giống bạn Dương Mạnh Quyết
ta có: AB<AC<BC(Vì 3cm<4cm<5cm)
=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)
Bài 3:
*Xét tam giác ABC, có:
góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)
hay góc A+60 độ +40 độ=180độ
=> góc A= 180 độ-60 độ-40 độ.
=> góc A=80 độ
Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)
=> BC>AC>AB( Các cạnh và góc đối diện trong tam giác)
Cho tam giác ABC có A(-2; 4); B (5; 5); C( 6; -2). Đường tròn ngoại tiếp tam giác ABC có phương trình là:
A. x 2 + y 2 − 2 x − y + 20 = 0.
B. x − 2 2 + y − 1 2 = 20.
C. x 2 + y 2 − 4 x − 2 y + 20 = 0.
D. x 2 + y 2 − 4 x − 2 y − 20 = 0.
Cho tam giác ABC có a = 3 cm, b = 4 cm, c = 5 cm. Tam giác ABC là
A. Tam giác nhọn
B. Tam giác tù
C. Tam giác vuông
D. Tam giác đều
Ta có: a2 + b2 = c2 nên tam giác ABC là tam giác vuông.
Chọn C
Cho tam giác ABC có a = 5, b = 6, c = 7. Diện tích của tam giác ABC bằng
A. 12 6
B. 3 6
C. 6 6
D. 9 6
Nửa chu vi của tam giác ABC là: p = 5 + 6 + 7 2 = 9
Áp dụng công thức Hê- rông, diện tích tam giác ABC là:
S = 9. 9 − 5 . 9 − 6 . 9 − 7 = 36.6 = 6 6 .
Chọn C.
Cho tam giác ABC có AB = 5, AC = 6, A =30°. Diện tích của tam giác ABC bằng
A.15/2
B.15
C. 30
D. 5
Diện tích tam giác ABC là:
S = 1 2 A B . A C . sin A = 1 2 .5.6. sin 30 ° = 15 2
Chọn A
Cho tam giác ABC có góc A=60° C=45° R=5 tính diện tích tam giác ABC
\(\widehat{B}=180^o-60^o-45^o=75^o\)
Theo định lý sin ta có:
\(\dfrac{AB}{sinC}=\dfrac{AC}{sinB}\)
\(\Rightarrow AC=\dfrac{AB\cdot sinB}{sinC}=\dfrac{5\cdot sin75^o}{sin45^o}=\dfrac{5+5\sqrt{3}}{2}\)
Mà: \(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC\cdot sinA\)
\(\Rightarrow S_{ABC}=\dfrac{1}{2}\cdot5\cdot\dfrac{5+5\sqrt{3}}{2}\cdot sin60^o=\dfrac{75+25\sqrt{3}}{8}\left(dvdt\right)\)
Cho tam giác ABC có A(3; -3), B(-3; 5), C(3; 5). Tâm đường tròn ngoại tiếp của tam giác ABC có tọa độ là
A.(0; 0)
B. (0; 1)
C. (1; 0)
D. (1; 1)
Gọi I(a;b) là tâm đường tròn ngoại tiếp tam giác ABC.
Ta có: AI = BI = CI ⇔ AI2 = BI2 = CI2
A I 2 = B I 2 B I 2 = C I 2 ⇔ a − 3 2 + b + 3 2 = a + 3 2 + b − 5 2 a + 3 2 + b − 5 2 = a − 3 2 + b − 5 2
⇔ a 2 − 6 a + 9 + b 2 + 6 b + 9 = a 2 + 6 a + 9 + b 2 − 10 b + 25 a 2 + 6 a + 9 + b 2 − 10 b + 25 = a 2 − 6 a + 9 + b 2 − 10 b + 25 ⇔ − 12 a + 16 b = 16 12 a = 0 ⇔ a = 0 b = 1
Vậy tâm I(0; 1).
Chọn B.