Rút gọn phân thức:(x+y)^2-z^2/x+y+z
Rút gọn phân thức: (x^3 + y^3 + z^3 - 3xyz) / (x - y)^2 + (y - z)^2 + (z - x)^2
\(\frac{x^3+y^3+z^3-3xyz}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\)
\(=\frac{x^3+y^3+z^3-3xyz}{x^2-2xy+y^2+y^2-2yz+z^2+z^2-2xz+x^2}=\frac{\left(x+y+z\right).\left(x^2+y^2+z^2-xy-yz-zx\right)}{2.\left(x^2+y^2+z^2-xy-yz-zx\right)}=\frac{x+y+z}{2}\)
p/s: áp dụng 7 hàng đẳng thức là làm đc =)
Rút gọn phân thức:\(\dfrac{\left(x+y\right)^2-z^2}{x+y+z}\)
\(\dfrac{\left(x+y\right)^2-z^2}{x+y+z}=\dfrac{\left(x+y+z\right)\left(x+y-z\right)}{x+y+z}=x+y-z\)
Chúc bn học tốt!
rút gọn phân thức sau:
(x^3-y^3+z^3+3xyz)/((x+y)^2+(y+z)^2+(z+x)^2)
sai đề rồi nhé , đề phải là :
\(\frac{x^3-y^3+z^3+3xyz}{\left(x+y\right)^2+\left(y+z\right)^2+\left(z-x\right)^2}\)
\(=\frac{\left(x-y\right)^3+3xy.\left(x-y\right)+z^3+3xyz}{x^2+2xy+y^2+y^2+2yz+z^2+z^2-2xz+x^2}\)
\(=\frac{\left(x-y+z\right).\left[\left(x-y\right)^2-\left(x-y\right).z+z^2\right]+3xy.\left(x-y+z\right)}{2x^2+2y^2+2z^2+2xy+2yz-2xz}\)
\(=\frac{\left(x-y+z\right).\left(x^2-2xy+y^2-xz+yz+z^2+3xy\right)}{2.\left(x^2+y^2+z^2+xy+yz-xz\right)}\)
\(=\frac{\left(x-y+z\right).\left(x^2+y^2+z^2+xy+yz-xz\right)}{2.\left(x^2+y^2+z^2+xy+yz-xz\right)}\)
\(=\frac{x-y+z}{2}\)
Rút gọn phân thức x^2+y^2+z^2-2xy+2xz-2yz/x^2-2xy+y^2-z^2
\(\dfrac{x^2+y^2+z^2-2xy+2xz-2yz}{x^2-2xy+y^2-z^2}\)
\(=\dfrac{\left(-x+y-z\right)^2}{\left(x-y\right)^2-z^2}\)
\(=\dfrac{\left[-\left(x-y+z\right)\right]^2}{\left(x-y-z\right)\left(x-y+z\right)}\)
\(=\dfrac{x-y+z}{x-y-z}\)
Rút gọn các phân thức sau: a) x^3+y^3+z^3-3xyz/(x-y)^2+(x-z)^2+(y-z)^2 b) (x^2-y^2)^3+(y^2-z^2)^3+(z^2-x^2)^3/(x-y)^3+(y-z)^3+(z-x)3
Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn nhé.
Rút gọn các phân thức: \(\dfrac{x^3-y^3+z^3+3xyz}{\left(x+y\right)^2+\left(y+z\right)^2+\left(z-x\right)^2}\)
Cho phân thức : A = x mũ 2 + y mũ 2 - z mũ 2 + 2xy/x mũ 2 - x mũ 2 + z mũ 2 + 2xz. Rút gọn phân thức rồi tính giá trị của biểu thức x = 0,y = 2009, z = 2010
\(A=\frac{x^2+y^2-z^2+2xy}{x^2-y^2+z^2+2xz}\)
\(=\frac{\left(x^2+2xy+y^2\right)-z^2}{\left(x^2+2xz+z^2\right)-y^2}\)
\(=\frac{\left(x+y\right)^2-z^2}{\left(x+z\right)^2-y^2}\)
\(=\frac{\left(x+y+z\right)\left(x+y+z\right)}{\left(x+y+z\right)\left(x-y+z\right)}\)
\(=\frac{x+y-z}{x-y+z}\)
Ta thay : \(x=0;y=2009;z=2010\) ta được :
\(A=\frac{0+2009-2010}{0-2009+2010}=-\frac{1}{1}=-1\)
Chúc bạn học tốt !!!
\(A=\frac{x^2+y^2-z^2+2xy}{x^2-y^2+z^2+2xz}=\frac{\left(x^2+2xy+y^2\right)-z^2}{\left(x^2+2xz+z^2\right)-y^2}=\frac{\left(x+y\right)^2-z^2}{\left(x+z\right)^2-y^2}\)
\(=\frac{\left(x+y+z\right)\left(x+y-z\right)}{\left(x+y+z\right)\left(x-y+z\right)}=\frac{x+y-z}{x-y+z}\)
Thay \(\hept{\begin{cases}x=0\\y=2009\\z=2010\end{cases}}\) vào biểu thức :
\(\Rightarrow A=\frac{0+2009-2010}{0-2009+2010}=-1\)
\(\frac{\text{x^2+y^2+z^2}}{\left(y-z\right)^2+\left(z-x\right)^2+\left(x-y\right)^2}\) Rút gọn phân thức, biết rằng x+y+z=0
\(=\frac{x^2+y^2+z^2}{2x^2+2y^2+2z^2-2xy-2yz-2zx}=\frac{x^2+y^2+z^2}{3\left(x^2+y^2+z^2\right)-\left(x^2+y^2+z^2+2xy+2yz+2xz\right)}\)
\(=\frac{x^2+y^2+z^2}{3\left(x^2+y^2+z^2\right)-\left(x+y+z\right)^2}=\frac{x^2+y^2+z^2}{3\left(x^2+y^2+z^2\right)}=\frac{1}{3}\)(vì x+y+z=0)
tách mẫu số ra được: 2(x2+y2+z2)-2(xy+yz+xz) (1)
mà x+y+z=0
=> (x+y+z)2=0
=> x2+y2+z2= -2(xy+yz +xz) (2)
Thay (2) vào (1) ta được mẫu số: 3(x2+y2+z2)
Phân thức khi rút gọn được là: 1/3
rút gọn các phân thức:\(\frac{x^3+y^3+z^3-3xyz}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\)