Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ťɧε⚡₣lαsɧ
Xem chi tiết
Akai Haruma
27 tháng 12 2019 lúc 20:24

Lời giải:

Áp dụng BĐT Bunhiacopxky:

\((\sqrt{x+2y}+\sqrt{y+2z}+\sqrt{z+2x})^2\leq [(x+2y)+(y+2z)+(z+2x)](1+1+1)\)

\(\Leftrightarrow (\sqrt{x+2y}+\sqrt{y+2z}+\sqrt{z+2x})^2\leq 9(x+y+z)=9\)

\(\Rightarrow \sqrt{x+2y}+\sqrt{y+2z}+\sqrt{z+2x}\leq 3\)

Ta có đpcm

Dấu "=" xảy ra khi \(\left\{\begin{matrix} \frac{\sqrt{x+2y}}{1}=\frac{\sqrt{y+2z}}{1}=\frac{\sqrt{z+2x}}{1}\\ x+y+z=1\end{matrix}\right.\) hay $x=y=z=\frac{1}{3}$

Khách vãng lai đã xóa
Ťɧε⚡₣lαsɧ
25 tháng 12 2019 lúc 22:31

.

Khách vãng lai đã xóa
an nam
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 4 2022 lúc 16:45

Với mọi a;b;c không âm ta có:

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)

\(\Leftrightarrow3a^2+3b^2+3c^2\ge a^2+b^2+c^2+2ab+2bc+2ca\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)

\(\Leftrightarrow a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}\)

Áp dụng:

a.

\(VT\le\sqrt{3\left(x+7+y+7+z+7\right)}=\sqrt{3\left(6+21\right)}=9\)

Dấu "=" xảy ra khi \(x=y=z=2\)

b.

\(VT\le\sqrt{3\left(3x+2y+3y+2z+3z+2x\right)}=\sqrt{15\left(x+y+z\right)}=\sqrt{15.6}=3\sqrt{10}\)

Dấu "=" xảy ra khi \(x=y=z=2\)

c.

\(VT\le\sqrt{3\left(2x+5+2y+5+2z+5\right)}=\sqrt{3\left(2.6+15\right)}=9\)

Dấu "=" xảy ra khi \(x=y=z=2\)

Lê Thị Huyền Trang
Xem chi tiết
Phạm Minh Quang
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 5 2020 lúc 23:32

\(\sqrt{x^2+y^2+y^2}\ge\sqrt{3\sqrt[3]{x^2y^4}}=\sqrt{3}.\sqrt[3]{xy^2}\)

\(\Rightarrow VT\ge\sqrt{3}\left(\frac{\sqrt[3]{xy^2}}{z}+\frac{\sqrt[3]{yz^2}}{x}+\frac{\sqrt[3]{zx^2}}{y}\right)\)

\(\Rightarrow VT\ge3\sqrt{3}\sqrt[3]{\frac{\sqrt[3]{xy^2.yz^2.zx^2}}{xyz}}=3\sqrt{3}.\sqrt[3]{\frac{\sqrt[3]{x^3y^3z^3}}{xyz}}=3\sqrt{3}\)

Dấu "=" xảy ra khi \(x=y=z\)

Phạm Minh Quang
14 tháng 5 2020 lúc 22:56

@Nguyễn Việt Lâm

Yêu các anh như ARMY yêu...
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 5 2020 lúc 23:39

\(VT=\sum\sqrt{\frac{1}{2}\left(x^2+2xy+y^2\right)+\frac{3}{2}\left(x^2+y^2\right)}\)

\(VT\ge\sum\sqrt{\frac{1}{2}\left(x+y\right)^2+\frac{3}{4}\left(x+y\right)^2}=\sum\sqrt{\frac{5}{4}\left(x+y\right)^2}\)

\(VT\ge\frac{\sqrt{5}}{2}\left(x+y\right)+\frac{\sqrt{5}}{2}\left(y+z\right)+\frac{\sqrt{5}}{2}\left(z+x\right)\)

\(VT\ge\sqrt{5}\left(x+y+z\right)=\sqrt{5}\)

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)

hilo
Xem chi tiết
TXT Channel Funfun
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 2 2021 lúc 6:23

Đề bài sai, phản ví dụ: \(x=y=\dfrac{1}{16};z=256\)

Nói chung, chỉ cần 2 biến đủ nhỏ là BĐT này đều sai

 

VUX NA
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 9 2021 lúc 14:36

\(VT^2\le3\left(\dfrac{1}{2x^2+y^2+3}+\dfrac{1}{2y^2+z^2+3}+\dfrac{1}{2z^2+x^2+3}\right)\)

Mặt khác:

\(\dfrac{1}{2\left(x^2+1\right)+y^2+1}\le\dfrac{1}{4x+2y}=\dfrac{1}{2}\left(\dfrac{1}{x+x+y}\right)\le\dfrac{1}{18}\left(\dfrac{2}{x}+\dfrac{1}{y}\right)\)

\(\Rightarrow VT^2\le\dfrac{1}{6}\left(\dfrac{3}{x}+\dfrac{3}{y}+\dfrac{3}{z}\right)=\dfrac{1}{2}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=\dfrac{3}{2}\)

\(\Rightarrow VT\le\dfrac{\sqrt{6}}{2}\)

phan tuấn anh
Xem chi tiết
Thầy Giáo Toán
9 tháng 3 2016 lúc 4:19

Ta chứng minh điều sau: Nếu \(a,b>0\) thì \(2a^2+ab+2b^2\ge\frac{5\left(a+b\right)^2}{4}.\)  Thực vậy bất đẳng thức cần chứng minh tương đương với
 \(8a^2+4ab+8b^2\ge5\left(a^2+2ab+b^2\right)\Leftrightarrow3\left(a^2-2ab+b^2\right)\ge0\Leftrightarrow3\left(a-b\right)^2\ge0.\)

Quay lại bài toán, áp dụng nhận xét ta được

\(\sqrt{2x^2+xy+2y^2}\ge\frac{5\left(x+y\right)}{2},\sqrt{2y^2+yz+2z^2}\ge\frac{5\left(y+z\right)}{2},\sqrt{2z^2+zx+2x^2}\ge\frac{5\left(z+x\right)}{2}.\)

Cộng các bất đẳng thức lại ta sẽ được \(VT\ge\frac{5}{2}>\sqrt{5}.\)

Lưu Đức Mạnh
8 tháng 3 2016 lúc 20:58

mn ơi ko OLM ko có khóa học lớp 9 àh

Thần Đồng Đất Việt
8 tháng 3 2016 lúc 22:00

bạn hỏi toàn những câu cực kì khoai..