Rút gọn bt sau
1/2X^2(6X-3)-X (X^2+1/2)+1/2(X+4)
rút gọn bt sau: a=\(\left(\dfrac{x-1}{\sqrt{x}-1}+\dfrac{x\sqrt{x}-a}{1-x}\right):\left(\dfrac{\left(\sqrt{x}-1\right)^2+\sqrt{x}}{\sqrt{x}+1}\right)\)
Đoạn $x\sqrt{x}-a$ là sao vậy bạn? Có nhầm lẫn gì không?
\(=\left(\sqrt{x}+1-\dfrac{x+\sqrt{x}+1}{\sqrt{x}+1}\right):\dfrac{x-\sqrt{x}+1}{\sqrt{x}+1}\)
\(=\dfrac{x+2\sqrt{x}+1-x-\sqrt{x}-1}{\sqrt{x}+1}\cdot\dfrac{\sqrt{x}+1}{x-\sqrt{x}+1}\)
\(=\dfrac{\sqrt{x}}{x-\sqrt{x}+1}\)
rút gọn bt A=
1/x-2+1/x+2+x^2+1/x^2-4
Giải
A=x+2/x-2+1/x+2+x^2+1
A=x+2/(x-2)(x+2) +x-2/(x-2)(x+2)+x^2+1/(x-2)(x+2)
A=(x+2)+(x-2)+(x+1)/(x-2)(x+2)=x+1
rút gọn bt sau :A= \(\frac{1}{x+1}\)+\(\frac{x-1}{x}\)+\(\frac{x+2}{x^2+x}\)
MTC:x2+x
Ta có:A=\(\frac{1}{x+1}+\frac{x-1}{x}+\frac{x+2}{x^2+x}=\frac{x}{x^2+x}+\frac{\left(x-1\right)\left(x+1\right)}{x^2+x}+\frac{x+2}{x^2+x}\)
\(=\frac{x+x^2-1+x+2}{x^2+x}=\frac{x^2+2x+1}{x\left(x+1\right)}=\frac{\left(x+1\right)^2}{x\left(x+1\right)}=\frac{x+1}{x}\)
1+(x+1/x^3+1 - 1/x-x^2-1 -2/x+1) : (x^3 -2x^2/x^3-x^2 +x)
a,tìm đkxđ của bt Q
b,rút gọn bt Q
c,tìm gt bt Q khi x=5
d, tìm gt nguyên của x để có gt nguyên
Cho bt A= ( 1/x-2 - 2x/4-x2 + 1/2=x ) * (2/x-1) a, Rút gọn A b, Tính gt của bt a tại x=4 và x=2 C, Tìm x nguyên để A= 1/3
(P): (\(\dfrac{1}{x-\sqrt{x}}\)+\(\dfrac{1}{\sqrt{x}-1}\)):\(\dfrac{\sqrt{x}+1}{x-2\sqrt{x}+1}\)
a)rút gọn bt P
b) tìm x để P=-1
a: \(P=\dfrac{1+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}=\dfrac{\sqrt{x}-1}{\sqrt{x}}\)
b: Để P=-1 thì \(\sqrt{x}-1=-\sqrt{x}\)
=>x=1/4(nhận)
rút gọn bt:( /x-2/+/x-1/+x):(2x2 -7x+3) với x<1
Rút gọn bt A=\(\left(\dfrac{1+\sqrt{x}}{x+1}-\dfrac{4-3\sqrt{x}}{x-4\sqrt{x}+4}\right):\left(\dfrac{x-\sqrt{x}}{x\sqrt{x}-2x+\sqrt{x}-2}\right)\)
Sau đó tìm x để A>1
Ta có: \(A=\left(\dfrac{\sqrt{x}+1}{x+1}-\dfrac{4-3\sqrt{x}}{x-4\sqrt{x}+4}\right):\left(\dfrac{x-\sqrt{x}}{x\sqrt{x}-2x+\sqrt{x}-2}\right)\)
\(=\dfrac{\left(\sqrt{x}+1\right)\left(x-4\sqrt{x}+4\right)+\left(3\sqrt{x}-4\right)\left(x+1\right)}{\left(x+1\right)\left(\sqrt{x}-2\right)^2}:\dfrac{x-\sqrt{x}}{\left(\sqrt{x}-2\right)\left(x+1\right)}\)
\(=\dfrac{x\sqrt{x}-4x+4\sqrt{x}+x-4\sqrt{x}+4+3x\sqrt{x}+3\sqrt{x}-4x-4}{\left(x+1\right)\left(\sqrt{x}-2\right)^2}\cdot\dfrac{\left(\sqrt{x}-2\right)\left(x+1\right)}{x-\sqrt{x}}\)
\(=\dfrac{4x\sqrt{x}-7x+3\sqrt{x}}{\sqrt{x}-2}\cdot\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\cdot\left(4\sqrt{x}-3\right)}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{4\sqrt{x}-3}{\sqrt{x}-2}\)
Để A>1 thì A-1>0
\(\Leftrightarrow\dfrac{4\sqrt{x}-3-\sqrt{x}+2}{\sqrt{x}-2}>0\)
\(\Leftrightarrow\dfrac{3\sqrt{x}-1}{\sqrt{x}-2}>0\)
\(\Leftrightarrow\left[{}\begin{matrix}3\sqrt{x}-1\le0\\\sqrt{x}-2>0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}0< x\le\dfrac{1}{9}\\x>4\end{matrix}\right.\)