Cho tam giác MNP, có DE lần lượt là trung điểm của MN, MP. Trên tia đói của tia ED lấy điểm F sao cho EF=ED. CM
A) MD//FP
B) DN=EF
C) DF=NP, DF//NP
Cho tam giác MNP vuông tại N. Gọi D là trung điểm của MP. Từ D kẻ DE vuông góc với MN (M thuộc MN), DF vuông góc NP ( F thuộc NP). Trên tia DF lấy điểm I sao cho F là trung điểm của DI
a) Tứ giác NEDF là hình gì? Vì sao/
b) Chứng mình F là trung điểm của NP
a ) Xét ◇DENF có :
Góc N = Góc F = Ê = 90°
\(\Rightarrow\)◇DENF là hình chữ nhật
b ) Trong \(\Delta\)MNP có : ND là đường trung tuyến
\(\Rightarrow\)ND = DP ( vì đường trung tuyến bằng nữa cạnh huyền )
Xét \(\Delta\)NDF và \(\Delta\)PDF có :
ND = DP ( cmt )Góc NFD = Góc PFD ( = 90° )DF : cạnh chung\(\Rightarrow\)\(\Delta\)NDF = \(\Delta\)PDF ( cạnh huyền - cạnh góc vuông )
\(\Rightarrow\)NF = PF ( 2 cạnh tương ứng )
\(\Rightarrow\)F là trung điểm NP
a) Xét tứ giác NEDF có +) \(\widehat{ENF}=90^0\)(tam giác MNP vuông tại N)
+) \(\widehat{DFN}=90^0\)(DF vuông góc NP)
+) \(\widehat{DEN}=90^0\)(DE vuông góc MN)
\(\Rightarrow\)tứ giác NEDF là hình chữ nhật
b) Xét \(\Delta DFN\)và \(\Delta DFP\)có:
DF : cạnh chung
DN = DP ( Do ND là trung tuyến của tam giác vuông MNP)
Do đó \(\Delta DFN\)\(=\Delta DFP\left(ch-cgv\right)\)
\(\Rightarrow NF=PF\)
Suy ra F là trung điểm của NP (đpcm)
Cho tam giác MNP vuông tại M,tia phân giác của góc N cắt MP tại D. Kẻ DE vuông góc với NP gọi F là giao điểm của NM và DE
a.Chứng minh MN=NE
b.Chứng minh ND vuông góc với FP
a.Gọi H là giao điểm của NP và FP. Trên tia đối của tia DF lấy điểm K sao cho DK=DF lấy điểm I trên DP sao cho PE=2 lần DI
Chứng minh KHI thẳng hàng.
a: Xét ΔNMD vuông tại M và ΔNED vuông tại E có
ND chung
góc MND=góc END
=>ΔNMD=ΔNED
=>MN=NE
b: Xét ΔNFP có
PM,FE là đường cao
PM cắt FE tại D
=>D là trực tâm
=>ND vuông góc FP
cho tam giác DEF có DE=DF . Gọi M là trung điểm của EF chứng minh rằng
A, tam giác DEM = tam giác DFM
B,chứng minh góc DME = góc DMF từ đo suy ra DM vuống góc EF
C, trên tia đối của tia MD lấy điểm N sao cho M là trung điểm của DN chứng minh DE// NF
D , Vẽ điểm I thuộc DE , điểm k thuộc đoạn NF sao cho DI=NK chứng minh ba điển I,M,K thẳng hàng
a: Xét ΔDEM và ΔDFM có
DE=DF
DM chung
EM=FM
Do đó: ΔDEM=ΔDFM
Cho tam giác ABC có D. E lần lượt là trung điểm của AB; AC. Trên tia đối của tia ED lấy điểm F sao cho EF = DE. Chứng minh:
a. AD = FC; b. DF // BC c. DE // BC và DE = 1/2BC
( câu b bài 2 có thể sử dụng nhận xét hình thang có hai cạnh đáy bằng nhau
a. Xét tg ADE và tg FCE
có : AE=EC (GT)
^AEC=^CEF (Hai góc đối đỉnh)
DE = FE (GT)
b. tg ADE = tg CEF
⇒FC=AD
Mà AD = DB
=>DB=FC
=>DF//BC
C. DF//BC (cm b)
Mà D,E,F thẳng hằng
=>DE//BC
Xét hình thang DFCB
CÓ : DB//FC
=> DF=BC
Mà DE = 1/2DF
=>DE=1/2BC
Cho tam giác DEF có DE=6cm, DF=8cm, EF=10cm. Vẽ tia phân giác của góc E cắt cạnh DF tại M. Trên cạnh EF lấy điểm N sao cho EN=ED. Đường thẳng NM cắt đường thẳng DE tại I.
a) Chứng minh tam giác DEF là tam giác vuông
b) MN vuông góc EF rồi so sánh DM và MF
c) Gọi P, Q lần lượt là trung điểm của DN và IF. Chứng minh 3 điểm P, M, Q thẳng hàng
a/ Vì EF2=DE2+DF2 (Pytago)
=> Tam giác DEF vuông tại D
Cho tam giác DEF vuông tại D, gọi M là trung điểm của EF. Trên tia đối của tia MD lấy điểm N sao cho MN = MD.
a)Chứng minh ED//FH và DM vuông góc EF
b)Trên mặt phẳng bờ là DF
a: Sửa đề: Cm ED//FN và FN vuông góc với FD
Xét tứ giác DENF có
M là trung điểm chung của DN và EF
góc EDF=90 độ
Do đó: DENF là hình chữ nhật
=>ED//FN và FN vuông góc với FD
Cho ∆MNP vuông tại M, kẻ đường cao MH (H∈NP) a) Chứng minh: ∆HNM∽∆MNP b) Cho biết MN=6cm, MP=8cm. Tính NP, MH, HN, HP c) Kẻ tia phân giác MD (D∈NP). Trong ∆MDN kẻ tiếp tia phân giác DE (E∈MN) trong ∆MDN kẻ tia phân giác DF (F∈MP) chứng minh: EM/EN×DN/DP×FP/FM=1
a: Xét ΔHNM vuông tại H và ΔMNP vuông tại M có
góc N chung
Do đó: ΔHNM\(\sim\)ΔMNP
b: \(NP=\sqrt{6^2+8^2}=10\left(cm\right)\)
\(MH=\dfrac{MN\cdot MP}{NP}=4.8\left(cm\right)\)
\(HN=\dfrac{MN^2}{NP}=3.6\left(cm\right)\)
=>HP=6,4(cm)
Cho tam giác ABC. Gọi D,E thứ tự là trung điểm của AB,AC. Trên tia đối của tia ED, lấy điểm F sao cho EF=ED. C/m:
a) DF // BC
b) DE = 1/2 BC
a: Xét tứ giác ADCF có
E là trung điểm của AC
E là trung điểm của DF
Do đó: ADCF là hình bình hành
Suy ra: AD//CF và AD=CF
=>BD//CF và BD=CF
=>BDFC là hình bình hành
Suy ra: FD//BC
b: Xét ΔABC có
D là trung điểm của AB
E là trung điểm của AC
Do đó: DE là đường trung bình
=>DE=1/2BC
Cho tam giác MNP = tam giác DEF. Tìm các cạnh bằng nhau giữa hai tam giác ?
MN = DE; MP= DF; NP = EF.
MN = DF; MP= DE; NP = EF.
MN = EF; MP= DF; NP = ED.
MN = DE; MP= EF; NP = DF.