3x(x-2y) + 6y(2y-x)
Tìm x,y,z biết 6x 4z 5 2y 5x 6 5z 6y 4và 3x 2y 5z 96 tìm x,y,z biết 6x 4z 5 2y 5x 6 5z 6y 4 và 3x 2y
Tìm bậc của các đa thức sau:
a) \(x^3y^3+6x^2y^2+12xy-8
\)
b) \(x^2y+2xy^2-3x^3y+4xy^5\)
c) \(x^6y^2+3x^6y^3-7x^5y^7+5x^4y\)
d) \(2x^3+x^4y^5+3xy^7-x^4y^5+10-xy^7\)
e) \(0,5x^2y^3+3x^2y^3z^3-a.x^2y^3-x^4-x^2y^3\) với a là hằng số
a, bậc 6
b, bậc 6
c, bậc 12
d, bậc 9
e, bậc 8
Kết quả của phép chia 18( x + 2y )^6 ÷( 3x + 6y )^2 là: A. ( x + 2y )^4 B. 6( x + 2y )^4 C. 9( x + 2y )^4 D. 2( x + 2y )^4
Kết quả phân tích đa thức 3x - 6y thành nhân tử là:
A3(x - 6y)
B3(3x - y)
C 3(3x - 2y)
D 3(x - 2y)
đáp án D
k cho mik nha
Kết quả phân tích đa thức 3x - 6y thành nhân tử là:
A. 3(x - 6y)
B. 3(3x - y)
C. 3(3x - 2y)
D. 3(x - 2y)
phan tich cac da thuc sau thanh nhan tu theo mau:
2x^3-x
5x^2(x-1)-15x(x-1)
3x^2y^2+12x^2y-15x-y^2
3x(x-2y)+6y(2y-x)
phan tich cac da thuc sau thanh nhan tu theo mau:
a)\(2x^3-x\)
\(=x\left(2x^2-1\right)\)
\(=x\left(\left(\sqrt{2}x\right)^2-1^2\right)\)\
\(=x\left(\sqrt{2}x-1\right)\left(\sqrt{2}x+1\right)\)
b)\(5x^2\left(x-1\right)-15x\left(x-1\right)\)
\(=\left(5x^2-15x\right)\left(x-1\right)\)
\(=5x\left(x-3\right)\left(x-1\right)\)
d)\(3x\left(x-2y\right)+6y\left(2y-x\right)\)
\(=3x\left(x-2y\right)-6y\left(x-2y\right)\)
\(=\left(3x-6y\right)\left(x-2y\right)\)
\(=3\left(x-2y\right)\left(x-2y\right)\)
\(=3\left(x-2y\right)^2\)
phân tích đa thức thành nhân tử
a)2x^2-2y^2-6x-6y
b)x^2-2x-15
c)3x^3-6x^2y^3+9x^2y^2
d)5x^2y^3-25x^3y^4+10x^3y^3
e)12x^2y-18xy^2-30Y^2
f)2x^2-2y^2-6x-6y
g)x^3+3x^2-3x-1
h)x^4-5x^2+4
đề dài nên T giải câu a thôi bn tự làm tiếp mấy câu khác nhé
2x^2 - 2y^2 - 6x - 6y
= 2(x^2-y^2) - 6(x+ y)
= 2(x-y)(x+y) - 6(x+y)
= (2(x-y)-6) (x+y)
Bài 1: Phân tích đa thức thành nhân tử:
1) \(3x^3y^2-6xy\)
2) \(\left(x-2y\right).\left(x+3y\right)-2.\left(x-2y\right)\)
3) \(\left(3x-1\right).\left(x-2y\right)-5x.\left(2y-x\right)\)
4) \(x^2-y^2-6y-9\)
5) \(\left(3x-y\right)^2-4y^2\)
6) \(4x^2-9y^2-4x+1\)
8) \(x^2y-xy^2-2x+2y\)
9) \(x^2-y^2-2x+2y\)
Bài 2: Tìm x:
1) \(\left(2x-1\right)^2-4.\left(2x-1\right)=0\)
2) \(9x^3-x=0\)
3) \(\left(3-2x\right)^2-2.\left(2x-3\right)=0\)
4) \(\left(2x-5\right)\left(x+5\right)-10x+25=0\)
Bài 2:
1: \(\left(2x-1\right)^2-4\left(2x-1\right)=0\)
=>\(\left(2x-1\right)\left(2x-1-4\right)=0\)
=>(2x-1)(2x-5)=0
=>\(\left[{}\begin{matrix}2x-1=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{5}{2}\end{matrix}\right.\)
2: \(9x^3-x=0\)
=>\(x\left(9x^2-1\right)=0\)
=>x(3x-1)(3x+1)=0
=>\(\left[{}\begin{matrix}x=0\\3x-1=0\\3x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{3}\\x=-\dfrac{1}{3}\end{matrix}\right.\)
3: \(\left(3-2x\right)^2-2\left(2x-3\right)=0\)
=>\(\left(2x-3\right)^2-2\left(2x-3\right)=0\)
=>(2x-3)(2x-3-2)=0
=>(2x-3)(2x-5)=0
=>\(\left[{}\begin{matrix}2x-3=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{5}{2}\end{matrix}\right.\)
4: \(\left(2x-5\right)\left(x+5\right)-10x+25=0\)
=>\(2x^2+10x-5x-25-10x+25=0\)
=>\(2x^2-5x=0\)
=>\(x\left(2x-5\right)=0\)
=>\(\left[{}\begin{matrix}x=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{5}{2}\end{matrix}\right.\)
Bài 1:
1: \(3x^3y^2-6xy\)
\(=3xy\cdot x^2y-3xy\cdot2\)
\(=3xy\left(x^2y-2\right)\)
2: \(\left(x-2y\right)\left(x+3y\right)-2\left(x-2y\right)\)
\(=\left(x-2y\right)\cdot\left(x+3y\right)-2\cdot\left(x-2y\right)\)
\(=\left(x-2y\right)\left(x+3y-2\right)\)
3: \(\left(3x-1\right)\left(x-2y\right)-5x\left(2y-x\right)\)
\(=\left(3x-1\right)\left(x-2y\right)+5x\left(x-2y\right)\)
\(=(x-2y)(3x-1+5x)\)
\(=\left(x-2y\right)\left(8x-1\right)\)
4: \(x^2-y^2-6y-9\)
\(=x^2-\left(y^2+6y+9\right)\)
\(=x^2-\left(y+3\right)^2\)
\(=\left(x-y-3\right)\left(x+y+3\right)\)
5: \(\left(3x-y\right)^2-4y^2\)
\(=\left(3x-y\right)^2-\left(2y\right)^2\)
\(=\left(3x-y-2y\right)\left(3x-y+2y\right)\)
\(=\left(3x-3y\right)\left(3x+y\right)\)
\(=3\left(x-y\right)\left(3x+y\right)\)
6: \(4x^2-9y^2-4x+1\)
\(=\left(4x^2-4x+1\right)-9y^2\)
\(=\left(2x-1\right)^2-\left(3y\right)^2\)
\(=\left(2x-1-3y\right)\left(2x-1+3y\right)\)
8: \(x^2y-xy^2-2x+2y\)
\(=xy\left(x-y\right)-2\left(x-y\right)\)
\(=\left(x-y\right)\left(xy-2\right)\)
9: \(x^2-y^2-2x+2y\)
\(=\left(x^2-y^2\right)-\left(2x-2y\right)\)
\(=\left(x-y\right)\left(x+y\right)-2\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y-2\right)\)
phân tích đa thức thành nhân tử
3x(x-2y)+6y(2y-x)
3x(x-2y)-6y(x-2y)=3(x-2y)(x-2y)=3(x-2y)^2
Giải:
\(3x\left(x-2y\right)+6y\left(2y-x\right)\)
\(=3x\left(x-2y\right)-6y\left(x-2y\right)\)
\(=\left(x-2y\right)\left(3x-6y\right)\)
Vậy ...
Chúc bạn học tốt!
3x(x-2y)+6y(2y-x)
= 3x.x - 3x.2y + 6y.2y - 6y.x
= 3x2 - 6xy + 12y2 - 6xy
= 3x2+ 12y2 - 6xy - 6xy
= 3x2 + 12y2 - 12xy
= 3.( x2+ 4y2 - 4xy)
Không biết có đúng không nữa
Bài 2: Phân tích thành nhân tử:
b) (x+2)2-25
c) 36(x-y)2
d) x2+1/2x+1/16
e) 2x4y3-3x2y4+5x3y4
f) 3x(x-2)+5(2-x)
g) 3x(x-2y)+6y(2y-x)
i) x(x-1)+(1-x)2
k) 2y(x+2)-3x-6
l) x2+6x-3(x+6)
m) xy+x-2y-2
n) 3x2-3xy-5x+5y
15) x3-8/125
16) x2-x-y2-yy
17) x3+4x-(y3+4y)
18) 5x-√5x+1/4
19) x3+2x2+x-16xy2
20) (x+2y)2-(x-y)
21) (9x2-33x3x+2y+-4y2
22) 9x2-6xy+3x-y+y2
\(b,\left(x+2\right)^2-25\)
\(=\left(x+2\right)^2-5^2\)
\(=\left(x-3\right)\left(x+7\right)\)
\(c,36\left(x-y\right)^2\)
\(=36\left(x^2-2xy+y^2\right)\)
\(=36x^2-72xy+36y^2\)
\(d,x^2+\dfrac{1}{2}x+\dfrac{1}{16}\)
\(=x^2+2.x.\dfrac{1}{4}+\dfrac{1}{4}^2\)
\(=\left(x+\dfrac{1}{4}\right)^2\)
\(e,2x^4y^3-3x^2y^4+5x^3y^4\)
\(=x^2y^3\left(2x^2-3y+5xy\right)\)
Các câu còn lại làm tương tự, chú ý sd HĐT