Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Cẩm Tú
Xem chi tiết
Hải Bùi
13 tháng 5 2018 lúc 12:39

bạn làm dc chưa

Nanh
17 tháng 5 2018 lúc 8:35

Lm đc r

Lê Thị Hương
Xem chi tiết
shitbo
22 tháng 12 2019 lúc 16:29

\(\sqrt{\frac{ab}{c+ab}}=\sqrt{\frac{ab}{ac+bc+c^2+ab}}=\sqrt{\frac{ab}{\left(a+b\right)\left(b+c\right)}}\)

\(tt\Rightarrow2\text{ lần biểu thức}=2\sqrt{\frac{bc}{\left(b+a\right)\left(c+a\right)}}+2\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}+2\sqrt{\frac{ca}{\left(b+c\right)\left(a+b\right)}}\)

\(\le\frac{b}{b+a}+\frac{c}{c+a}+\frac{a}{a+c}+\frac{b}{b+c}+\frac{c}{b+c}+\frac{a}{a+b}\left(\sqrt{ab}\le\frac{a+b}{2}\right)=3\Rightarrow dpcm\)

Khách vãng lai đã xóa
nguyễn hoàng linh
Xem chi tiết
Nguyễn Hoàng Bảo Nhi
26 tháng 4 2020 lúc 8:14

Bài 1 : Bạn tự vẽ hinh 

a,

I là trung điểm AC và IN//AB nên IN là đường trung bình trong tam giác ABC

Suy ra N là trung điểm BC

I là trung điểm AC và IM//BC nên IM là đường trung bình trong tam giác ABC

Suy ra M là trung điểm BA

Do đó MN là đường trung bình của tam giác ABC nên MN//AC và MN=1/2 AC=5 (cm) 

b,

MN// AC nên AMNC là hình thang

Mặt khác AM=1/2AB=1/2BC=CN

MN<AC nên AMNC là hình thang cân

IN //AB hay IN//BM

IM//BC hay IM//BN nên IMBN là hình bình hành

Mặt khác ABC cân tại B nên BI vuông góc với AC hay BI vuông góc với MN

Do đó IMBN là hình thoi

c,

IMBN là hình thoi nên O là trung điểm IB và MN

Tứ giác BICK có hai đường chéo BC và IK cắt nhau tại trung điểm mỗi đường nên BICK là hình bình hành

Do đó BK//IC//AI và BK=IC=IA

hay ABKI là hình bình hành

O là trung điểm của BI nên O cũng là trung điểm AK

Do vậy A,O,K thẳng hàng

Khách vãng lai đã xóa
Tran Le Khanh Linh
26 tháng 4 2020 lúc 8:27

a) Ta có I là trung điểm AC; IN//AB 

=> IN là đường trung bình \(\Delta\)ABC

=> N là trung điểm BC

Cmtt: M là trung điểm AB

=> MN là đường trung bình \(\Delta\)ABC

=> MN//AC và \(MN=\frac{1}{2}AC=\frac{1}{2}\cdot10=5\left(cm\right)\)

b) Tứ giác AMNC có: MN//AC
=> Tứ giác AMNC là hình thang

Lại có: \(AM=\frac{1}{2}AB\)(do M là trung điểm AB)

\(AN=\frac{1}{2}CB\)(Do N là trung điểm AC)

\(AB=\frac{1}{2}CB\)(do \(\Delta\)ABC cân tại B)

=> AMNC là hình thang cân

Tứ giác IMBN có: IM//BN và IN//BM

=> Tứ giác IMBN là hình bình hành

Lại có MB=BN\(\left(=\frac{1}{2}AD=\frac{1}{2}BC\right)\)

=> IMBN là hình thoi

c) N là trung điểm IK và O là trung điểm BI

=> ON là đường trung bình của \(\Delta\)IBK

=> ON//BK và ON//AI

=> BK//AI

IN//AB => IK//AB

=> Tứ giác ABKI là hình bình hành

Có D là trung điểm BI

=> O là trung điểm của AK

=> O;A;K thẳng hàng

Khách vãng lai đã xóa
Nguyễn Hoàng Bảo Nhi
26 tháng 4 2020 lúc 16:13

Bài 2 : 

ÁP dụng 

\(\frac{1}{\sqrt{x}+\sqrt{x+1}}=\frac{\left(\sqrt{x+1}-\sqrt{x}\right)}{\left(\sqrt{x+1}-\sqrt{x}\right)\left(\sqrt{x+1}+\sqrt{x}\right)}\)

\(=\frac{\left(\sqrt{x+1}-\sqrt{x}\right)}{x+1-x}=\sqrt{x+1}-\sqrt{x}\)

Ta có : 

\(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{99}+\sqrt{100}}\)

\(=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+....+\sqrt{100}-\sqrt{99}\)

\(=\sqrt{100}-1=9\)

Khách vãng lai đã xóa
Minh Khoa
Xem chi tiết
Nguyễn Linh Chi
1 tháng 3 2020 lúc 18:14

Ta có: \(\sqrt{a^2-ab+b^2}=\sqrt{\frac{1}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2}\ge\sqrt{\frac{1}{4}\left(a+b\right)^2}=\frac{1}{2}\left(a+b\right)\)

khi đó:

\(P\le\frac{1}{\frac{1}{2}\left(a+b\right)}+\frac{1}{\frac{1}{2}\left(b+c\right)}+\frac{1}{\frac{1}{2}\left(a+c\right)}\)

\(=\frac{2}{a+b}+\frac{2}{b+c}+\frac{2}{c+a}\)

Lại có: \(\frac{1}{a}+\frac{1}{b}\ge\frac{\left(1+1\right)^2}{a+b}=\frac{4}{a+b}\)=> \(\frac{2}{a+b}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)

=> \(P\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{1}{2}\left(\frac{1}{b}+\frac{1}{c}\right)+\frac{1}{2}\left(\frac{1}{c}+\frac{1}{a}\right)\)

\(=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\)

Dấu "=" xảy ra <=> a = b = c = 1

Vậy max P = 3 tại a = b = c =1.

Khách vãng lai đã xóa
tth_new
1 tháng 3 2020 lúc 19:08

Không thích làm cách này đâu nhưng đường cùng rồi nên thua-_-

Đặt \(\sqrt{x+y}=a;\sqrt{y+z}=b;\sqrt{z+x}=c\) suy ra

\(x=\frac{a^2+c^2-b^2}{2};y=\frac{a^2+b^2-c^2}{2};z=\frac{b^2+c^2-a^2}{2}\). Ta cần chứng minh:

\(abc\left(a+b+c\right)\ge\left(a+b+c\right)\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)

\(\Leftrightarrow abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)

Đây là bất đẳng thức Schur bậc 3, ta có đpcm.

Khách vãng lai đã xóa
Lê Châu Linh
Xem chi tiết
Thắng Nguyễn
29 tháng 9 2017 lúc 17:03

Đặt \(THANG=\frac{\left(b+c\right)\sqrt{a^2+1}}{\sqrt{b^2+1}\sqrt{c^2+1}}\)

\(=\frac{\left(b+c\right)\sqrt{a^2+ab+bc+ca}}{\sqrt{b^2+ab+bc+ca}\sqrt{c^2+ab+bc+ca}}\)

\(=\frac{\left(b+c\right)\sqrt{\left(a+b\right)\left(a+c\right)}}{\sqrt{\left(b+c\right)\left(a+b\right)}\sqrt{\left(a+c\right)\left(b+c\right)}}\)

\(=\frac{\left(b+c\right)}{\sqrt{\left(b+c\right)}\sqrt{\left(b+c\right)}}=\frac{\left(b+c\right)}{\sqrt{\left(b+c\right)^2}}\)

\(=\frac{b+c}{b+c}=1\left(b,c\in R^+\right)\)

Lê Châu Linh
29 tháng 9 2017 lúc 8:12

chứng minh bằng 1

nguyễn công huy
Xem chi tiết
Trịnh Hoang Anh
Xem chi tiết
Nguyễn Anh Duy
19 tháng 7 2020 lúc 20:48

cho a,b,c là 3 số thực thỏa mãn a+b+c= căn a + căn b +căn c=2 chứng minh rằng : căn a/(1+a) + căn b/(1+b) + căn c /( 1+ c ) = 2/ căn (1+a)(1+b)(1+c) Khó quá mọi người oi

Hà Thị Ngọc Anh
Xem chi tiết
Thắng Nguyễn
8 tháng 1 2017 lúc 22:36

đề này thiếu r` bn viết lại đi mai mk lm cho

lmtaan_ 1342
Xem chi tiết