\(A=|x-2021|+|x-1|\)
Tìm x
a)x.(x+2021)=0
b)(x-2020).(x+2021)=0
c)(x-2021).(x2+1)=0
d)(x+1)+(x+3)(x+5)+.....+(x+99)=0
a) \(x\left(x+2021\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+2021=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-2021\end{cases}}\).
b) \(\left(x-2020\right)\left(x+2021\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2020=0\\x+2021=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2020\\x=-2021\end{cases}}\).
c) \(\left(x-2021\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2021=0\\x^2+1=0\end{cases}}\Leftrightarrow x=2021\).
d) \(\left(x+1\right)+\left(x+3\right)+\left(x+5\right)+...+\left(x+99\right)=0\)
Xét tổng: \(A=1+3+5+...+99\)
Số số hạng của dãy số là: \(\frac{99-1}{2}+1=50\).
Tổng của dãy là: \(A=\left(99+1\right)\times50\div2=2500\).
\(\left(x+1\right)+\left(x+3\right)+\left(x+5\right)+...+\left(x+99\right)=0\)
\(\Leftrightarrow50x+2500=0\)
\(\Leftrightarrow x=-50\).
Tìm chữ số tận cùng của A biết A 1 x 2 x 3 x 4 x ... x 2020 x 2021 1 x 3 x 5 x ... x 2019 x 2021.
Dễ thấy A chia hết cho 10 nên A có tận cùng là 0
còn 1x 3 x 5 x... x 2021 là một số lẻ và chia hết cho 5 nên có tận cùng là 5
Là 1 bạn ơi!!!
cho x,y,z khác 0 thoả mãn x+y+z=2022 và 1/x+1/y+1/z=1/2022 CMR: 1/x^2021+1/y^2021+1/z^2021=1/x^2021+y^2021+z^2021
\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{2022}\)
\(\Rightarrow\dfrac{yz+zx+xy}{xyz}=\dfrac{1}{x+y+z}\)
\(\Rightarrow\left(yz+zx+xy\right)\left(x+y+z\right)=xyz\)
\(\Rightarrow xy\left(x+y\right)+yz\left(y+z\right)+zx\left(z+x\right)+3xyz-xyz=0\)
\(\Rightarrow xy\left(x+y\right)+yz\left(y+z\right)+zx\left(z+x\right)+2xyz=0\)
\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)
\(\Rightarrow x=-y\) hoặc \(y=-z\) hoặc \(z=-x\).
-Đến đây thôi bạn, câu hỏi sai rồi ạ.
Cho x,y,z khác 0 thỏa mãn x+yz=2022 và \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=2022\)
CMR: \(\dfrac{1}{x^{2021}}+\dfrac{1}{y^{2021}}+\dfrac{1}{z^{2021}}=\dfrac{1}{x^{2021}+y^{2021}+z^{2021}}\)
CMR: Nếu: \(\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}=\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}\) thì: \(\dfrac{x^{2021}+y^{2021}+z^{2021}}{a^{2021}+b^{2021}+c^{2021}}=\dfrac{x^{2021}}{a^{2021}}+\dfrac{y^{2021}}{b^{2021}}+\dfrac{z^{2021}}{c^{2021}}\)
Ta thấy \(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}\ge\dfrac{x^2}{a^2+b^2+c^2}+\dfrac{y^2}{a^2+b^2+c^2}+\dfrac{z^2}{a^2+b^2+c^2}=\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}\).
Mà đẳng thức xảy ra nên ta phải có x = y = z = 0 (Do \(a^2,b^2,c^2>0\)).
Thay vào đẳng thức cần cm ta có đpcm.
Tìm giá trị nhỏ nhất của: A = là:
A.
2 tại x = 2021
B.
-1 tại x = 2020
C.
2020 tại x = 2021
D.
1 tại x = 2022
2021 x 45 + 2021 + 2021 x 51 + 2021 x 1/3
= 2021 x 45 + 2021 x 1 + 2021 x 51 + 2021 x 3
= 2021 x (45 + 1 + 51 + 3)
= 2021 x 100
=202100
a)Thực hiện phép tính:(3x+1)(3x-1)-(18x^3+5x^2-2x):2x
b)Tìm x biết:3x(x-2021)-x+2021=0
\(a,\left(3x+1\right)\left(3x-1\right)-\left(18x^3+5x^2-2x\right):2x\\ =\left(9x^2-1\right)-\left(9x^2+\dfrac{5}{2}x-1\right)\\ =9x^2-1-9x^2-\dfrac{5}{2}x+1=\dfrac{5}{2}x\)
\(b,3x\left(x-2021\right)-x+2021=0\\ \Rightarrow b,3x\left(x-2021\right)-\left(x-2021\right)=0\\ \Rightarrow\left(x-2021\right)\left(3x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=2021\\x=\dfrac{1}{3}\end{matrix}\right.\)
Bài 4: tính giá trị biểu thức (1-1/2)x(1-1/3)x(1-1/4)x...x(1-1/2023) A.1 B.1/2023 C.1/2021 D.2020/2021
\(\left(1-\dfrac{1}{2}\right)\times\left(1-\dfrac{1}{3}\right)\times\left(1-\dfrac{1}{4}\right)\times...\times\left(1-\dfrac{1}{2023}\right)\\ =\dfrac{1}{2}\times\dfrac{2}{3}\times\dfrac{3}{4}\times...\times\dfrac{2022}{2023}\\ =\dfrac{1}{2023}\)
tìm giá trị nhỏ nhất của biểu thức :
a) A = 2|x - 2021| + 9 b) B = |x -2| + |y+1| + 2021
a) Ta có: \(\left|x-2021\right|\ge0\forall x\)
\(\Leftrightarrow2\left|x-2021\right|\ge0\forall x\)
\(\Leftrightarrow2\left|x-2021\right|+9\ge9\forall x\)
Dấu '=' xảy ra khi x=2021
b) Ta có: \(\left|x-2\right|\ge0\forall x\)
\(\left|y+1\right|\ge0\forall y\)
Do đó: \(\left|x-2\right|+\left|y+1\right|\ge0\forall x,y\)
\(\Leftrightarrow\left|x-2\right|+\left|y+1\right|+2021\ge2021\forall x,y\)
Dấu '=' xảy ra khi (x,y)=(2;-1)