cho hàm số y=(2m+1)x-m+3 (1) a,xác định giá trị của m để đồ thị của hàm số cắt trục tung tại điểm có tung độ bằng. b,xác định giá trị của m để đồ thị của hàm số cắt trục hoành tại điểm có hoành độ bằng -3. c,vẽ đồ thị của hàm số ứng với giá trị của m vừa tìm được ở các câu a và b trên cùng hệ trục toạ độ oxy.tìm giao điểm của hai đường thẳng vừa vẽ được. d,tìm điểm cố định mà đồ thị hàm số (1) luôn đi qua với mọi m
a: Bạn bổ sung đề đi bạn
b: thay x=-3 và y=0 vào (d), ta được:
\(-3\left(2m+1\right)-m+3=0\)
=>-6m-3-m+3=0
=>-7m=0
=>m=0
d: y=(2m+1)x-m+3
=2mx+x-m+3
=m(2x-1)+x+3
Tọa độ điểm cố định mà (1) luôn đi qua là:
\(\left\{{}\begin{matrix}2x-1=0\\y=x+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=3+\dfrac{1}{2}=\dfrac{7}{2}\end{matrix}\right.\)
Cho hàm số y = (2m+1)x+m− 3 (d1) a) Tìm giá trị của m biết đồ thị hàm số (d1) đi qua điểm A(-2;-2). Vẽ đồ thị hàm số với m vừa tìm được b) Cho đường thẳng (d2): y=(2a+1).x +.4a -3.Tìm giá trị nguyên của a để (d2) cắt trục hoành tại điểm có hoành độ nguyên. GIÚP EM VỚI MỌI NGƯỜI Ạ
a: Thay x=-2 và y=-2 vào (d1), ta đc:
-2(2m+1)+m-3=-2
=>-4m-2+m-3=-2
=>-3m-5=-2
=>-3m=3
=>m=-1
b: Tọa độ giao của (d2) với trục hoành là:
y=0 và (2a+1)x+4a-3=0
=>x=-4a+3/2a+1
Để x nguyên thì -4a-2+5 chia hết cho 2a+1
=>\(2a+1\in\left\{1;-1;5;-5\right\}\)
=>\(a\in\left\{0;-1;2;-3\right\}\)
a) Cho hàm số y = ax + 3. Tìm a khi biết đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng 6
b) Tìm tất cả các giá trị của m để đường thẳng (d) : y = 3x + 2 cắt đường thẳng (d’) : y = (2m – 1)x + 8
a, - Ta có : Đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng 6 .
\(\Rightarrow-\dfrac{b}{a}=-\dfrac{3}{a}=6\)
\(\Rightarrow a=-\dfrac{1}{2}\)
b, - Xét phương trình hoành độ giao điểm :\(3x+2=\left(2m-1\right)x+8\)
\(\Leftrightarrow3x+2=2mx-x+8\)
\(\Leftrightarrow3x+2-2mx+m-8=0\)
\(\Leftrightarrow x\left(3-2m\right)=6-m\)
- Để hai đường thẳng cắt được nhau thì : \(3-2m\ne0\)
\(\Leftrightarrow m\ne\dfrac{3}{2}\)
Vậy ...
a) Vì đồ thị hàm số y=ax+3 cắt trục hoành tại điểm có hoành độ bằng 6 nên
Thay x=6 và y=0 vào hàm số y=ax+3, ta được:
\(6a+3=0\)
\(\Leftrightarrow6a=-3\)
hay \(a=-\dfrac{1}{2}\)
Vậy: \(a=-\dfrac{1}{2}\)
b)
Để hàm số y=(2m-1)x+8 là hàm số bậc nhất thì \(2m-1\ne0\)
\(\Leftrightarrow2m\ne1\)
hay \(m\ne\dfrac{1}{2}\)(1)
Để (d) cắt (d') thì \(2m-1\ne3\)
\(\Leftrightarrow2m\ne4\)
hay \(m\ne2\)(2)
Từ (1) và (2) suy ra \(m\notin\left\{\dfrac{1}{2};2\right\}\)
Bài 1 : Cho hàm số y = (m + 5)x+ 2m – 10
Với giá trị nào của m thì y là hàm số bậc nhất
Với giá trị nào của m thì hàm số đồng biến.
Tìm m để đồ thị hàm số điqua điểm A(2; 3)
Tìm m để đồ thị cắt trục tung tại điểm có tung độ bằng 9.
Tìm m để đồ thị đi qua điểm 10 trên trục hoành .
Tìm m để đồ thị hàm số song song với đồ thị hàm số y = 2x -1
Chứng minh đồ thị hàm số luôn đi qua 1 điểm cố định với mọi m.
Tìm m để khoảng cách từ O tới đồ thị hàm số là lớn nhất
Bài 2: Cho đường thẳng y=2mx +3-m-x (d) . Xác định m để:
Đường thẳng d qua gốc toạ độ
Đường thẳng d song song với đường thẳng 2y- x =5
Đường thẳng d tạo với Ox một góc nhọn
Đường thẳng d tạo với Ox một góc tù
Đường thẳng d cắt Ox tại điểm có hoành độ 2
Đường thẳng d cắt đồ thị Hs y= 2x – 3 tại một điểm có hoành độ là 2
Đường thẳng d cắt đồ thị Hs y= -x +7 tại một điểm có tung độ y = 4
Đường thẳng d đi qua giao điểm của hai đường thảng 2x -3y=-8 và y= -x+1
Bài 3: Cho hàm số y=( 2m-3).x+m-5
Vẽ đồ thị với m=6
Chứng minh họ đường thẳng luôn đi qua điểm cố định khi m thay đổi
Tìm m để đồ thị hàm số tạo với 2 trục toạ độ một tam giác vuông cân
Tìm m để đồ thị hàm số tạo với trục hoành một góc 45o
Tìm m để đồ thị hàm số tạo với trục hoành một góc 135o
Tìm m để đồ thị hàm số tạo với trục hoành một góc 30o , 60o
Tìm m để đồ thị hàm số cắt đường thẳng y = 3x-4 tại một điểm trên 0y
Tìm m để đồ thị hàm số cắt đường thẳng y = -x-3 tại một điểm trên 0x
Bài4 (Đề thi vào lớp 10 tỉnh Hải Dương năm 2000,2001) Cho hàm số y = (m -2)x + m + 3
a)Tìm điều kiện của m để hàm số luôn luôn nghịch biến .
b)Tìm điều kiện của m để đồ thị cắt trục hoành tại điểm có hoành độ bằng 3.
c)Tìm m để đồ thị hàm số y = -x + 2, y = 2x –1 và y = (m - 2)x + m + 3 đồng quy.
d)Tìm m để đồ thị hàm số tạo với trục
Bài 1:
Đặt: (d): y = (m+5)x + 2m - 10
Để y là hàm số bậc nhất thì: m + 5 # 0 <=> m # -5
Để y là hàm số đồng biến thì: m + 5 > 0 <=> m > -5
(d) đi qua A(2,3) nên ta có:
3 = (m+5).2 + 2m - 10
<=> 2m + 10 + 2m - 10 = 3
<=> 4m = 3
<=> m = 3/4
(d) cắt trục tung tại điểm có tung độ bằng 9 nên ta có:
9 = (m+5).0 + 2m - 10
<=> 2m - 10 = 9
<=> 2m = 19
<=> m = 19/2
(d) đi qua điểm 10 trên trục hoành nên ta có:
0 = (m+5).10 + 2m - 10
<=> 10m + 50 + 2m - 10 = 0
<=> 12m = -40
<=> m = -10/3
(d) // y = 2x - 1 nên ta có:
\(\hept{\begin{cases}m+5=2\\2m-10\ne-1\end{cases}}\) <=> \(\hept{\begin{cases}m=-3\\m\ne\frac{9}{2}\end{cases}}\) <=> \(m=-3\)
Giả sử (d) luôn đi qua điểm cố định M(x0; y0)
Ta có: \(y_0=\left(m+5\right)x_0+2m-10\)
<=> \(mx_0+5x_0+2m-10-y_0=0\)
<=> \(m\left(x_o+2\right)+5x_0-y_0-10=0\)
Để M cố định thì: \(\hept{\begin{cases}x_0+2=0\\5x_0-y_0-10=0\end{cases}}\) <=> \(\hept{\begin{cases}x_0=-2\\y_0=-20\end{cases}}\)
Vậy...
Tìm giá trị của m để đồ thị hàm số y = \(\left(m-2\right)x+m^2-3\) cắt trục hoành tại điểm có hoành độ bằng 4.
Hàm số \(y=\left(m-2\right)x+m^2-3\) cắt đồ thị tại điểm có hoành độ bằng 4
\(\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=0\end{matrix}\right.\)
\(\Leftrightarrow0=4\left(m-2\right)+m^2-3\)
\(\Leftrightarrow m^2+4m-11=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=-2+\sqrt{15}\\m=-2-\sqrt{15}\end{matrix}\right.\)
Đồ thị cắt trục hoành tại điểm có hoành độ bằng 4 => A(4;0)
thay A(4;0) vào hàm số ta có:
\(\left(m-2\right).4+m^2-3=0\)
\(\Leftrightarrow4m-8+m^2-3=0\\ \Leftrightarrow m^2+4m-11=0\\ \Leftrightarrow\left[{}\begin{matrix}m=-2+\sqrt{15}\\m=-2-\sqrt{15}\end{matrix}\right.\)
Thay x=4 và y=0 vào hàm số, ta được:
\(4\left(m-2\right)+m^2-3=0\)
\(\Leftrightarrow m^2-3+4m-8=0\)
\(\Leftrightarrow m^2+4m-11=0\)
\(\text{Δ}=4^2-4\cdot1\cdot\left(-11\right)=60\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}m_1=\dfrac{-4-2\sqrt{15}}{2}=-2-\sqrt{15}\\m_2=\dfrac{-4+2\sqrt{15}}{2}=-2+\sqrt{15}\end{matrix}\right.\)
Cho hàm số y = (m + 1)x + 2m - 5 (d)
1. Tìm m để đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng -7.
2. Tìm m để đồ thị hàm số cắt trục tung tại điểm có tung độ bằng 3.
3. Tìm m để (d) đi qua gốc tọa độ.
1: Thay x=-7 và y=0 vào (d), ta được:
-7(m+1)+2m-5=0
=>-7m-7+2m-5=0
=>-5m-12=0
=>m=-12/5
2: Thay x=0 và y=3 vào (d), ta được:
0(m+1)+2m-5=3
=>2m-5=3
=>2m=8
=>m=4
3: Thay x=0 và y=0 vào (d), ta được:
0(m+1)+(2m-5)=0
=>2m-5=0
=>m=5/2
Cho hàm số y = 2x + m + 1. Tìm giá trị thực của m để đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng 3.
A. m = 7
B. m = 3
C. m = -7
D. m = ± 7
Bài 1: Cho hàm số y=mx+2m-1
a) Vẽ đồ thị khi m=2
b) Tìm m để hàm số nghịch biến
c) Tìm m để đồ thị hàm số cắt trục tung tại điểm có tung độ = 3
d) Tìm m để đồ thị hàm số cắt trục hoành tại điểm có hoành độ = -3
a, bạn tự vẽ nhé
b, Để hàm số nghịch biến khi m < 0
c, đths y = mx + 2m - 1 cắt trục tung tại điểm có tung độ bằng 3
Thay x = 0 ; y = 3 ta được : \(2m-1=3\Leftrightarrow m=2\)
d, đths y = mx + 2m - 1 cắt trục hoành tại điểm có hoành độ bằng -3
Thay x = -3 ; y = 0 ta được : \(-3m+2m-1=0\Leftrightarrow-m-1=0\Leftrightarrow m=-1\)
bổ sung hộ mình nhé
( dòng đầu tiên ) Để đths trên là hàm bậc nhất khi \(m\ne0\)