Tìm x , y là các số nguyên dương sao cho 2x + 4y = 100 .
Tìm x , y là các số nguyên dương sao cho 2x + 4y = 100 .
1. Tìm các giá trị nguyên dương nhỏ hơn 10 của x,y sao cho: 3x - 4y = -21
2. Tìm số nguyên tố P sao cho P+2 và P+4 cũng là các số nguyên tố.
tìm các số nguyên dương x , y sao cho x , y < 10 và 3x - 4y = -21
a) Tìm số nguyên x sao cho x+2020 là số nguyên âm lớn nhất.
b) Tìm số nguyên y sao cho y-(-100) là số nguyên dương nhỏ nhất.
a: x+2020 là số nguyên âm lớn nhất
=>x+2020=-1
=>x=-2021
b: y-(-100) là số nguyên dương nhỏ nhất
=>y+100=1
=>y=-99
1, tìm các số nguyên dương < 10 của x và y sao cho 3x - 4y= -21
x=0
y=1
muốn giải rõ thì tích mình đã
Tìm các số nguyên dương nhỏ hơn 10 của x và y sao cho 3x – 4y = –21
Bài 6:
a) Tìm số nguyên x sao cho x + 2017 là số nguyên âm lớn nhất,
b) Tìm số nguyên y sao cho y – (– 100) là số nguyên dương nhỏ nhất.
\(6,\)
\(a,x+2017=-1\)
\(\Rightarrow x=-2018\)
Vậy: \(x=-2018\)
\(b,y-\left(-100\right)=1\)
\(\Rightarrow y+100=1\)
\(\Rightarrow y=-99\)
Vậy: \(y=-99\)
Tìm các cặp số (x,y) nguyên dương thỏa mãn phương trình sau:x^2-y^2+2x-4y-10=0
\(x^2-y^2+2x-4y-10=0\)
\(\Rightarrow\left(x^2+2x+1\right)-\left(y^2+4y+4\right)-7=0\)
\(\Rightarrow\left(x+1\right)^2-\left(y+2\right)^2=7\)
\(\Rightarrow\left(x+1+y+2\right)\left(x+1-y-2\right)=4\)
\(\Rightarrow\left(x-y-1\right)\left(x+y+3\right)=7\)
Vì \(x,y\) nguyên dương nên \(x+y+3>x-y-1>0\)
\(\Rightarrow\hept{\begin{cases}x+y+3=7\\x-y-1=1\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=3\\y=1\end{cases}}\)
Mn giúp mình 2 câu này với
a)Tìm nghiệm nguyên của phương trình 2xy-y2-6x+4y=7
b)Cho x,y là các số nguyên dương sao cho x2+y2-x chia hết cho xy. Chứng minh x là số chính phương
a) \(2xy-y^2-6x+4y=7\)
\(\Leftrightarrow2xy-6x-y^2+3y+y-3=4\)
\(\Leftrightarrow\left(2x-y+1\right)\left(y-3\right)=4\)
Tới đây bạn xét bảng giá trị thu được nghiệm \(\left(x,y\right)\).
b) \(x^2+y^2-x⋮xy\Rightarrow x^2+y^2-x⋮x\Rightarrow y^2⋮x\).
Đặt \(y^2=kx,\left(k\inℤ\right),d=\left(x,k\right)\).
\(x^2+\left(kx\right)^2-x⋮xy\Rightarrow x+k^2x-1⋮y\).
suy ra \(x+k^2x-1⋮d\Rightarrow1⋮d\Rightarrow d=1\).
Do đó \(kx=y^2\)mà \(\left(k,x\right)=1\)nên \(x\)là số chính phương.