Rút gọn
P = \(\sqrt{x+\sqrt{2x-1}}-\sqrt{x-\sqrt{2x-1}}\)
P=\(\left(\dfrac{1}{1-\sqrt{x}}-\dfrac{1}{\sqrt{x}}\right)\):\(\left(\dfrac{2x+\sqrt{x}-1}{1-x}+\dfrac{2x\sqrt{x}+x-\sqrt{x}}{1+x\sqrt{x}}\right)\)
Rút gọnP
Tính giá trị của P với \(x=7-4\sqrt{3}\)
Rút gọn
P=\(\dfrac{x+2\sqrt{x}}{\sqrt{x}}-\left(3-\sqrt{x}\right)\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\sqrt{x}}-3+\sqrt{x}\)
\(=\sqrt{x}+2-3+\sqrt{x}=2\sqrt{x}-1\)
ĐK: \(x>0\)
Khi đó:
\(P=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\sqrt{x}}-3+\sqrt{x}\\ =\sqrt{x}+2-3+\sqrt{x}\\ =2\sqrt{x}-1\)
\(P=\dfrac{x+2\sqrt{x}}{\sqrt{x}}-\left(3-\sqrt{x}\right)\\ =\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\sqrt{x}}-\left(3-\sqrt{x}\right)\\ =\sqrt{x}+2-3+\sqrt{x}\\ =2\sqrt{x}-1\)
Rút gọn : A=\(\dfrac{\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}}{\sqrt{x+\sqrt{2x-1}+\sqrt{x-\sqrt{2x-1}}}}.\left(\sqrt{2x-1}\right)\)
Rút gọn biểu thức \(P=\left(\frac{\sqrt{x}+1}{\sqrt{2x}+1}+\frac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}-1}-1\right):\left(1+\frac{\sqrt{x}+1}{\sqrt{2x}+1}-\frac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}-1}\right)\)
1.P= \(\left(\dfrac{\sqrt{x}+1}{\sqrt{2x}-1}+\dfrac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}-1}-1\right)\):\(\left(1+\dfrac{\sqrt{x}+1}{\sqrt{2x}+1}\dfrac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}-1}\right)\)
a) Rút gọn P
b) Tính giá trị của P khi x=\(\dfrac{1}{2}\)\(\left(3+2\sqrt{2}\right)\)
a) Ta có: \(P=\left(\dfrac{\sqrt{x}+1}{\sqrt{2x}-1}+\dfrac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}+1}-1\right):\left(1+\dfrac{\sqrt{x}+1}{\sqrt{2x}+1}-\dfrac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}-1}\right)\)
\(=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{2x}+1\right)+\left(\sqrt{2x}+\sqrt{x}\right)\left(\sqrt{2x}-1\right)-2x+1}{\left(\sqrt{2x}-1\right)\left(\sqrt{2x}+1\right)}:\left(\dfrac{2x-1+\left(\sqrt{x}+1\right)\left(\sqrt{2x}-1\right)-\left(\sqrt{2x}+\sqrt{x}\right)\left(\sqrt{2x}+1\right)}{\left(\sqrt{2x}-1\right)\left(\sqrt{2x}+1\right)}\right)\)
\(=\dfrac{x\sqrt{2}+\sqrt{x}+\sqrt{2x}+1+2x-\sqrt{2x}+x\sqrt{2}+\sqrt{x}-2x+1}{2x-1}:\dfrac{2x-1+x\sqrt{2}-\sqrt{x}+\sqrt{2x}-1-\left(2x+\sqrt{2x}+x\sqrt{2}+\sqrt{x}\right)}{2x-1}\)
\(=\dfrac{2x\sqrt{2}+2\sqrt{x}+2}{-2-2\sqrt{x}}\)
rút gọn
P= \((\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}).(\dfrac{1-\sqrt{a}}{1-a})^2\)
Với \(\left\{{}\begin{matrix}a\ge0\\a\ne1\end{matrix}\right.\)
\(P=\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right).\left(\dfrac{1-\sqrt{a}}{1-a}\right)^2\\ =\left(\dfrac{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)}{1-\sqrt{a}}+\sqrt{a}\right).\left(\dfrac{1-\sqrt{a}}{\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)}\right)^2\\ =\left(1+\sqrt{a}+a+\sqrt{a}\right)\left(\dfrac{1}{1+\sqrt{a}}\right)^2\\ =\left[\left(1+\sqrt{a}\right)+\sqrt{a}\left(\sqrt{a}+1\right)\right]\left(\dfrac{1}{1+\sqrt{a}}\right)^2\\ =\dfrac{\left(1+\sqrt{a}\right)\left(1+\sqrt{a}\right).1^2}{\left(1+\sqrt{a}\right)^2}=1\)
cho M= \(\left(\dfrac{\sqrt{x}+1}{\sqrt{2x}+1}+\dfrac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}-1}-1\right)\div\left(1+\dfrac{\sqrt{x}}{\sqrt{2x}+1}-\dfrac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}-1}\right)\)
a) rút gọn M
b) tính giá trị của M khi \(x=\dfrac{1}{3}\left(3+2\sqrt{2}\right)\)
c) tìm tất cả các giá trị của x sao cho B=x-4
d) tìm khoảng giá trị của x sao cho B <\(-\dfrac{2}{3}\)
Lm nhanh giúp mk nhé mk đang cần gấp
a) Ta có: \(M=\left(\dfrac{\sqrt{x}+1}{\sqrt{2x}+1}+\dfrac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}-1}-1\right):\left(1+\dfrac{\sqrt{x}}{\sqrt{2x}+1}-\dfrac{\sqrt{2x}+\sqrt{x}}{\sqrt{2x}-1}\right)\)
\(=\left(\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{2x}-1\right)+\sqrt{x}\left(\sqrt{2x}+1\right)^2-2x+1}{\left(\sqrt{2x}+1\right)\left(\sqrt{2x}-1\right)}\right):\left(\dfrac{2x-1+\sqrt{x}\left(\sqrt{2x}-1\right)-\sqrt{x}\left(\sqrt{2x}+1\right)^2}{\left(\sqrt{2x}+1\right)\left(\sqrt{2x}-1\right)}\right)\)
\(=\dfrac{x\sqrt{2}-\sqrt{x}+\sqrt{2x}-1+\sqrt{x}\left(2x+2\sqrt{2x}+1\right)-2x+1}{2x-1+x\sqrt{2}-\sqrt{x}-\sqrt{x}\left(2x+2\sqrt{2x}+1\right)}\)
\(=\dfrac{x\sqrt{2}-\sqrt{x}+\sqrt{2x}-2x+2x\sqrt{x}+2\sqrt{2x}+\sqrt{x}}{2x-1+x\sqrt{2}-\sqrt{x}-2x\sqrt{x}-2\sqrt{2x}-\sqrt{x}}\)
\(=\dfrac{x\sqrt{2}+3\sqrt{2x}-2x+2x\sqrt{x}}{x\sqrt{2}-2\sqrt{2x}+2x-2\sqrt{x}-2x\sqrt{x}}\)
Rút gọn biểu thức:
\(A=\frac{\sqrt{x+2\sqrt{x-1}+\sqrt{x-2\sqrt{x-1}}}}{\sqrt{x+\sqrt{2x-1}+\sqrt{x-\sqrt{2x-1}}}}.\sqrt{2x-1}\)
Rút gọn:
\(A=1-\left[\dfrac{2x-1+ \sqrt{x}}{1-x}+\dfrac{2x\sqrt{x}+x-\sqrt{x}}{1+x\sqrt{x}}\right]:\dfrac{2\sqrt{x}-1}{2x-x\sqrt{x}-\sqrt{x}}\)