Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
poppy Trang
Xem chi tiết
Mai Thị Thúy
Xem chi tiết
Kimian Hajan Ruventaren
29 tháng 7 2021 lúc 21:39

ý a ở đây bn https://hoc247.net/hoi-dap/toan-10/giai-he-pt-3x-x-2-2-y-2-va-3y-y-2-2-x-2-faq371128.html

Nguyễn Việt Lâm
29 tháng 7 2021 lúc 22:06

b.

Với \(xy=0\) không là nghiệm

Với \(xy\ne0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\left(y^2+1\right)=y\left(5-x^2\right)\\y^2+1=y\left(5-2x\right)\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{y^2+1}{y}=\dfrac{5-x^2}{x}\\\dfrac{y^2+1}{y}=5-2x\end{matrix}\right.\)

\(\Rightarrow\dfrac{5-x^2}{x}=5-2x\)

\(\Leftrightarrow5-x^2=5x-2x^2\)

\(\Leftrightarrow...\)

Nguyễn Việt Lâm
29 tháng 7 2021 lúc 22:06

c.

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+x\left(y+1\right)+\left(y+1\right)^2=3\\2x^2-\left(y+1\right)^2=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+x\left(y+1\right)+\left(y+1\right)^2=3\\6x^2-3\left(y+1\right)^2=3\end{matrix}\right.\)

\(\Rightarrow5x^2-x\left(y+1\right)-4\left(y+1\right)^2=0\)

\(\Leftrightarrow\left(x-y-1\right)\left(5x+4\left(y+1\right)\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y=x-1\\y=-\dfrac{5x+4}{4}\end{matrix}\right.\)

Thế vào 1 trong 2 pt ban đầu...

ha dinh
Xem chi tiết
chuthianhthu
Xem chi tiết
Nguyễn thị ngọc hoan
31 tháng 5 2020 lúc 10:38

a)\(\left\{{}\begin{matrix}8x+2y=4\\8x+3y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1\\4x+1=2\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}y=1\\x=\frac{1}{4}\end{matrix}\right.\)b)

\(\left\{{}\begin{matrix}12x-8y=44\\12x-15y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7y=35\\4x-5y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=5\\4x-5.5=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=5\\x=7\end{matrix}\right.\)c)\(\left\{{}\begin{matrix}9x=-18\\4x+3y=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\4.\left(-2\right)+3y=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=7\end{matrix}\right.\)

Nguyễn thị ngọc hoan
31 tháng 5 2020 lúc 10:39

các câu khác tương tự

Mai Thị Lệ Thủy
Xem chi tiết
Mysterious Person
12 tháng 9 2018 lúc 21:36

mấy bài dạng như này mk sẽ hướng dẩn nha .

a) ta có : \(\left\{{}\begin{matrix}\left(x+y-2\right)\left(2x-y\right)=0\\x^2+y^2=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x+y-2=0\\2x-y=0\end{matrix}\right.\\x^2+y^2=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+y-2=0\\x^2+y^2=2\end{matrix}\right.\\\left\{{}\begin{matrix}2x-y=0\\x^2+y^2=0\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\) giải bằng cách thế bình thường nha

b) ta có : \(\left\{{}\begin{matrix}x^2+y^2+2x+2y=6\\x+y-3xy+1=0\end{matrix}\right.\) \(\Leftrightarrow2x^2+2y^2+6xy-5=0\)

\(\Leftrightarrow2\left(x+y\right)^2+2xy-5=0\) sài vi ét --> .......................

c) đây là phương trình đối xứng loại 1 , có trên mang nha .

câu d và e là phương trình đối xứng loại 2 , cũng có trên mạng nha .

Mai Thị Thúy
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 7 2021 lúc 23:27

a.

\(\left\{{}\begin{matrix}x^3-y^3=16x-4y\\-4=5x^2-y^2\end{matrix}\right.\)

Nhân vế:

\(-4\left(x^3-y^3\right)=\left(16x-4y\right)\left(5x^2-y^2\right)\)

\(\Leftrightarrow21x^3-5x^2y-4xy^2=0\)

\(\Leftrightarrow x\left(7x-4y\right)\left(3x+y\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{4y}{7}\\y=-3x\end{matrix}\right.\)

Thế vào \(y^2=5x^2+4...\)

Nguyễn Việt Lâm
29 tháng 7 2021 lúc 23:31

b. Đề bài không hợp lý ở \(4x^2\)

c.

\(\Leftrightarrow\left\{{}\begin{matrix}x^3-y^3=9\\3x^2+6y^2=3x-12y\end{matrix}\right.\)

Trừ vế:

\(x^3-y^3-3x^2-6y^2=9-3x+12y\)

\(\Leftrightarrow x^3-3x^2+3x-1=y^3+6y^2+12y+8\)

\(\Leftrightarrow\left(x-1\right)^3=\left(y+2\right)^3\)

\(\Leftrightarrow x-1=y+2\)

\(\Leftrightarrow y=x-3\)

Thế vào \(x^2=2y^2=x-4y\) ...

Nguyễn Việt Lâm
30 tháng 7 2021 lúc 11:28

b.

\(\Leftrightarrow\left\{{}\begin{matrix}4x^2+y^4-4xy^3=1\\4x^2+2y^2-4xy=2\end{matrix}\right.\)

\(\Rightarrow y^4-2y^2-4xy^3+4xy=-1\)

\(\Leftrightarrow\left(y^2-1\right)^2-4xy\left(y^2-1\right)=0\)

\(\Leftrightarrow\left(y^2-1\right)\left(y^2-1-4xy\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y=1\\y=-1\\x=\dfrac{y^2-1}{4y}\end{matrix}\right.\)

Thế vào \(2x^2+y^2-2xy=1\) ...

Với \(x=\dfrac{y^2-1}{4y}\) ta được:

\(2\left(\dfrac{y^2-1}{4y}\right)^2+y^2-2\left(\dfrac{y^2-1}{4y}\right)y=1\)

\(\Leftrightarrow5y^4-6y^2+1=0\)

Lê Mai
Xem chi tiết
Phương Linh
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 9 2020 lúc 21:35

a.

\(x^2-3y^2+2xy-x+5y-2=0\)

\(\Leftrightarrow\left(x^2+3xy-2x\right)+\left(-3y^2-xy+2y\right)+x+3y-2=0\)

\(\Leftrightarrow x\left(x+3y-2\right)-y\left(x+3y-2\right)+x+3y-2=0\)

\(\Leftrightarrow\left(x-y+1\right)\left(x+3y-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=y-1\\x=2-3y\end{matrix}\right.\)

Thay lên pt đầu: \(\left[{}\begin{matrix}\left(y-1\right)^2+y^2+y-1+y=8\\\left(2-3y\right)^2+y^2+2-3y+y=8\end{matrix}\right.\)

Bạn tự giải nốt

b.

\(\Leftrightarrow\left\{{}\begin{matrix}3x+5y=9-2xy\\4x+6y=20-2xy\end{matrix}\right.\)

\(\Rightarrow x+y=11\Rightarrow y=11-x\)

Thay vào pt đầu:

\(3x+5\left(11-x\right)=9-2x\left(11-x\right)\)

Bạn tự giải nốt

Nguyễn Trung Hiếu
Xem chi tiết