Cho Tam giác ABC (AB=AC). Phân giác AD, lấy E thuộc AD
a) CM tg AEB = tg AEC
b) CM ED phân giác góc BEC
c) CM AD vuông góc BC
cho tam giác ABC có AB<AC.Tia phân giác góc A cắt BC tại D.Trên AC lấy điểm E,sao cho AE=AB
a,CM DB=DE
b,CM AD vuông BE
c,Trên tia đối tia DA lấy điểm M. CM:tg BDM=tg EDM
a,Xét △AED và △ABD có
AE = AB (theo giả thiết)
EAD=BAD (theo giả thiết)
AD là cạnh chung
⇒△AED = △ABD (c.g.c)
⇒DE = DB (hai cạnh tương ứng)
b, gọi o là giao điểm của AD và BE
Xét △AEO và △ABO có
AE = AB (theo giả thiết)
EAO=BAO (theo giả thiết)
AO là cạnh chung
⇒△AEO = △ABO (c.g.c)
⇒AOE = AOB (hai góc tương ứng)
ta có : AOE + AOB = 180 độ (hai góc kề bù)
mà AOE = AOB
⇒AOE = AOB = 180 : 2 = 90
⇒ AO \(\perp\) EB hay AD \(\perp\) EB
c, vì AE = AB ⇒ △AEB cân tại A
⇒AEO = ABO
ta có : AEM = AEO + MEO
⇒MEO = AEM - AEO
ABM = ABO + MB
⇒MBO = ABM - ABO
mà AEO = ABO
⇒MEO = MBO
⇒△MEB cân tại M ⇒ME = MB
Xét △MEO và △MBO có
ME = MB (chứng minh trên)
MOE = MOB = 90 độ
MO là cạnh chung
⇒△MEO = △MBO (cạnh huyền - cạnh góc vuông)
⇒EMO = BMO (hai góc tương ứng)
Xét △BDM và △EDM có
ME = MB (chứng minh trên)
EMO = BMO (chứng minh trên)
MD là cạnh chung
⇒△BDM = △EDM (c.g.c)
mình trình bày rất mất thời gian nên nếu đúng thì tick mình nha
Cho tg ABC có góc A=60 độ , AB<AC , đường cao BH ( H thuộc AC ).
a) So sánh góc ABC và góc ACB. Tính góc ABH.
b) Vẽ AD phân giác của góc A ( D thuộc BC ) , vẽ BI vuông góc AD tại I . Cm tg AIB=tg BHA .
c) Tia BI cắt AC ở E . Cm tg ABE đều.
d) Cm DC>DB
a) Ta có: AB < AC
=> ACB < ABC
ABH = 90 - 60 = 30o
b) DAC = DAB = 90 - (A/2) = 90 - 30 = 60o
ABI = 90 - 30 = 60
Xét 2 tam giác vuông AIB và BHA có: AB (chung)
Ta có: BAH = ABD = 60 (cmt)
=> AIB = BHA (ch - gn)
c) Theo câu a), ta có: Tam giác AIB = BHA (ch - gn)
=> AIB = BHA = 60o
=> BEA = 180 - 60 - 60 = 60o
Có: ABE = BEA = EAB = 60
=> Tam giác ABE là tam giác đều.
d) Gọi Bx là tia đối của tia BA
Xét tam giác ADB và tam giác ADC có: AB = AE
EAD = DAB = 30o
Cạnh AD chung.
=> Tam giác ADB = tam giác ADC (c.g.c)
=> DB = DB (1) và góc ABD = góc AED
Do đó:
CBx = CED (cùng kề bù với 2 góc = nhau)
CBx > C
=> DC > DE (2)
Từ (1); (2) => DC > DB
Cho tam giác ABC có cạnh AB < AC , phân giác ad ( d € BC ) . Lấy điểm E trên tia AD sao cho ABD = ACE
a) CM tam giác ABD đồng dạng tg ACE
b ) CM TG CDE là tam giác cân
c) Kẻ BF // CE ( F € AD ) . CM AE.DF=AD.AE
d ) Qua A kẻ đường thẳng xy // BC . Qua F kẻ đường thẳng vuông góc với BC tại H . Đường thănge HF cắt đg thẳng xy tại I . Biết AB = a , AC = 3a . Tính tỉ số FH / FI
Cho tg ABC có AB<AC. Phân giác AD. Trên AC lấy E sao cho AE=AB. K là giao điểm của AB và ED. Mình đã cm được rằng:
Tam giác DBK=tam giác DEC
Tg AKC cân tại A
DA vuông góc KC
Nhưng mình ko biết cách so sánh BD và DC. Giúp mình với nha.
Cho tam giác ABC có AB<AC, AE là phân giác của góc  ( E thuộc BC). Trên cạnh AC lấy điểm D sao cho AD = AB
a/ Cm: BE=ED
b/ Cm: AE vuông góc BD
c/ Gọi K là giao điểm của DE và AB. Cm: tam giác KBE = tam giác CDE
d/Cm: BD//KC
a: Xét ΔABE và ΔADE có
AB=AD
\(\widehat{BAE}=\widehat{DAE}\)
AE chung
Do đó: ΔABE=ΔADE
Suy ra: BE=DE
b: Ta có: BE=DE
nên E nằm trên đường trung trực của BD(1)
Ta có: AB=AD
nên A nằm trên đường trung trực của BD(2)
Từ (1) và (2) suy ra AE là đường trung trực của BD
hay AE\(\perp\)BD
c: Xét ΔBEK và ΔDEC có
\(\widehat{KBE}=\widehat{CDE}\)
BE=DE
\(\widehat{BEK}=\widehat{DEC}\)
Do đó: ΔBEK=ΔDEC
d: Xét ΔAKC có
AB/BK=AD/DC
nên BD//KC
cho tam giác ABC có AB<AC, AE là phân giác của góc  ( E thuộc BC). Trên cạnh AC lấy điểm D sao cho AD = AB
a/ Cm: BE=ED
b/ Cm: AE vuông góc BD
c/ Gọi K là giao điểm của DE và AB. Cm: tam giác KBE = tam giác CDE
d/Cm: BD//KC
d) tam giác KBE = t/g CDE
=> KE = CE ( 2 cạnh tương ứng)
=> t/g KEC cân tại E
=> góc EKC = g ECK (3)
g BED= g KEC (4)
Từ (2),(3),(4) => gOBE=gODE=gBED=gKEC
=> BD//KC
cho tam giác ABC vuông tại A ,ABC=60 độ;BD là Phân giác của ABC. ( D thuộc AC). Kẻ DE vuông góc BC ( E thuộc BC)
a. biết BC = 10cm AB=5 cm tính cạnh AC? b. so sánh: DE và DC
c chứng minh tg ABD = tg EBD
d chứng minh tg BDC cân
e kẻ CF vuông góc BD ( F thuộc tia BD) chứng minh BA;ED và CF đồng quy
GIÚP MIK VỚI Ạ MIK CẦN RẤT GẤP
a: \(AC=\sqrt{10^2-5^2}=5\sqrt{3}\left(cm\right)\)
b: ΔDEC vuông tại E
=>DE<DC
c: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
d: Xét ΔDBC có góc DBC=góc DCB
nên ΔDBC cân tại D
e: gọi giao của CF và AB là H
Xét ΔBHC có
BF,CA là đường cao
BF cắt CA tại D
=>D là trực tâm
=>HD vuông góc BC tại E
=>H,D,E thẳng hàng
=>BA,DE,CF là trực tâm
Cho tam giác (tg) ABC cân tại A. Vẽ AM là đường trung tuyến của tg ABC (M thuộc BC).
a) CM tg ABC = tg ACM và góc BAM = góc CAM.
b) Trên tia đối của tia AB lấy điểm D sao cho AD=AB.
CM tg ACD cân và CD//AM.
c) Vẽ ME vuông góc AB tại E, AH vuông góc CD tại H. CM MH vuông góc ME.
a) cm tg ABM = tg ACM moi dung phai ko ban