1/3 +(1/3)^2 +(1/3)^3 +....+(1/3)^2000
A= 2000/1+ 1999/2 + 1998/3 + ... + 1/2000 + 2000 và B= 1/1 +1/2 + 1/3 + ... 1/2000
Tính A.B
Chứng minh : 1/15< 1/2^3 + 1/3^3 +...+1/2000^3 < 1/4
1/2=+1/2^2+1/2^3+1/2^3+..........+1/2^2000
tính:
A=(1-1/2).(1-1/3).(1-1/4). ....(1-1/2000)
B=(1+1/2).(1+1/3).(1+1/4). ....(1+1/2000)
A = ( 1 - 1/2 ) . ( 1 - 1/3 ) . ( 1 - 1/4 ) . ... . ( 1 - 1/2000)
A = ( 2/2 - 1/2 ) . ( 3/3 - 1/3 ) . ( 4/4 - 1/4 ) . ... . ( 2000/2000 - 1/2000 )
A = 1/2 . 2/3 . 3/4 . ... . 1999/2000
A = 1.(2.3. ... . 1999)/ (2.3.4. ... .1999).2000
A = 1/2000
B = ( 1 + 1/2 ).(1 + 1/3 ).( 1+ 1/4 ). ... .(1+1/2000)
B = ( 2/2 + 1/2 ).(3/3+1/3).(4/4+1/4). ... .(1+1/2000)
B = 3/2.4/3.5/4. ... .2001/2000
B = (3.4.5. ... .2000).2001/2.(3.4. ... .2000)
B = 2001/2
B = 1000,5
A=\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{2000}\right)\)
A=\(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{1999}{2000}\)
A=\(\frac{1.2.3.4...1999}{2.3.4.5...2000}\)
A=\(\frac{1}{2000}\)
B=\(\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\left(1+\frac{1}{4}\right)...\left(1+\frac{1}{2000}\right)\)
B=\(\frac{3}{2}.\frac{4}{3}.\frac{5}{4}...\frac{2001}{2000}\)
B=\(\frac{3.4.5...2001}{2.3.4...2000}\)
B=\(\frac{2001}{2}\)
tính:
A=(1-1/2).(1-1/3).(1-1/4). ....(1-1/2000)
B=(1+1/2).(1+1/3).(1+1/4). ....(1+1/2000)
=1/2 . 2/3 ....1999/2000
=1.2....1999/2.3...2000
1/2000
B= 3/2.4/3. ....2001/2000
B = 3.4....2001/2.3....2000
B =2001/2
Cho A= 2000/1 +1999/2 + 1998/3 +.... +1/2000 +2000
B= 1+ 1/2 +1/3 +1/4+..... +1/2000
Tính A/B
Các bn giúp mình với nha mình đang cần gấp. Cảm ơn ạ
Cho A= 2000/1 +1999/2 + 1998/3 +.... +1/2000 +2000
B= 1+ 1/2 +1/3 +1/4+..... +1/2000
Tính A/B
Các bn giúp mình với nha mình đang cần gấp. Cảm ơn ạ
Ta có:
\(\frac{A}{B}=\frac{\frac{2000}{1}+\frac{1999}{2}+\frac{1998}{3}+...+\frac{1}{2000}+2000}{1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}}\)
\(\Leftrightarrow\frac{A}{B}=\frac{\left(\frac{2000}{1}+1\right)+\left(\frac{1999}{2}+1\right)+\left(\frac{1998}{3}+1\right)+...+\left(\frac{1}{2000}+1\right)+2000+1}{1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}}\)
\(\Leftrightarrow\frac{A}{B}=\frac{\frac{2001}{1}+\frac{2001}{2}+\frac{2001}{3}+...+\frac{2001}{2000}+2001}{1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}}\)
\(\Leftrightarrow\frac{A}{B}=\frac{2001\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}\right)}{1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}}\)
\(\Leftrightarrow\frac{A}{B}=2001\)
1+3+3^2+3^3+...+3^2000 khi đó 2A=3n-1
bạn tra ông google đi
100% đúng nha(^-^)
Đặt A= 1 + 3 +32+33+.....+32000.
3A= 3 +32+33+.....+32001
3A - A = 3 +32+33+.....+32001 - (1 + 3 +32+33+.....+32000)
2A = 32001 - 1
=> A = \(\frac{3^{2001}-1}{2}\)
Ta có :\(3A=3+3^2+3^3+......+3^{2000}+3^{2001}\)
\(\Rightarrow3A-A=\left(3+3^2+3^3+....+3^{2000}+3^{2001}\right)-\left(1+3+3^2+.....+3^{2000}\right)\)
\(\Leftrightarrow2A=\left(3-3\right)+\left(3^2-3^2\right)+\left(3^3-3^3\right)+.....+\left(3^{2000}-3^{2000}\right)+\left(3^{2001}-1\right)\)
\(\Leftrightarrow2A=0+0+0+..+0+3^{2001}-1=3^{2001}-1\)
Vậy n=2001
cho a=1+3+3^2+3^3+...+3^2000 biết 2a=3^n-1 khi đó n=
a=1+3+3^2+....+3^2000
3a=3(1+3+3^2+....+3^2000)
3a=3+3^2+3^3+....+3^2001
3a-a=(3+3^2+3^3+....+3^2001)-(1+3+3^2+....+3^2000)
2a=3^2001-1(1)
Mà 2a=3^n-1.Từ (1)=>n=2001
Vậy n =2001
3a=3+32+33+.............+32001
3a-a=32001-1
2a=32001-1
=>n=2001