Cho hàm số
\(f_{\left(x\right)}=a.x+b\)
Biết \(f_{\left(2\right)}=3.f_{\left(1\right)}=4\)
Tính \(f_{\left(4\right)}+2.b\)
Giúp mình càng sớm càng tốt nhá các bạn thân yêu....mai mình nộp rồi
Cho hàm số \(f:Z^+\rightarrow R^+\) thỏa mãn các điều kiện
\(1.f_{\left(x\right)}=0\leftrightarrow x=0\)
\(2.f_{\left(xy\right)}=f_{\left(x\right)}f_{\left(y\right)}\left(\forall x,y\in Z^+\right)\)
\(3.f_{\left(x+y\right)}=f_{\left(x\right)}+f_{\left(y\right)}\left(\forall x,y\in Z^+\right)\)
Gọi \(n_o\) là số nguyên dương bé nhất trong các số nguyên dương m thõa mãn điều kiện \(f_{\left(m\right)}>1\). Chứng minh rằng với mọi số nguyên dương n ta đều có bất đẳng thức sau :
\(f_{\left(n\right)}< \dfrac{\left(f_{\left(n_o\right)}\right)^{1+\left[log_{n_o}n\right]}}{f_{\left(n_o\right)}-1}\)
\(\left[a\right]\) là phần nguyên của số thực \(a\)
cho f(n)=(n2 + n +1 )2 +1 với n thuộc N* . Đặt \(p_n=\frac{f_{\left(1\right)}\cdot f_{\left(3\right)}\cdot f_{\left(5\right)}\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot f_{\left(2n-1\right)}}{f_{\left(2\right)}\cdot f_{\left(4\right)}\cdot f_{\left(6\right)}\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot f_{\left(2n\right)}}\)
chứng minh rằng : P1 + P2 +P3 +................+ Pn <1/2
Cho hàm số: \(f\left(x\right)=\frac{2x+1}{x^2\left(x+1\right)^2}\). Tìm các số nguyên x, y sao cho:
\(S=f_{\left(1\right)}+f_{\left(2\right)}+f_{\left(3\right)}+...+f_{\left(x\right)}=\frac{2y\left(x+1\right)^3-1}{\left(x+1\right)^2}-19+x\)
AI NHANH MK TICK! CÁM ƠN TRƯỚC!
Xác dịnh đa thức \(f_{\left(x\right)}\) :
a) \(f_{\left(x\right)}:\left(x-1\right)\text{ }dư\text{ }4\)
b) \(f_{\left(x\right)}:\left(x+2\right)\text{ }dư\text{ }1\)
Gọi Q(x); P(x) lần lượt là thương của f(x) cho x- 1; f(x) cho x + 2.
Vì (x -1)(x +2) có dạng bậc 2 => đa thức dư có dạng ax + b.
Ta có: f(x) = (x - 1). Q(x) + 4
f(x) = (x + 2) . P(x) + 1
f(x) = (x - 1)(x +2). 5x2 + ax + b
Tại x = 1 thì f(1) = 4 = a + b (1)
Tại x = -2 thì f(-2) = 1 = -2a + b (2)
Trừ vế (1) cho (2) được:
\(a+b+2a-b=3\)
\(\Rightarrow a=1\)
Khi đó: \(b=3\)
\(\Rightarrow f\left(x\right)=\left(x-1\right)\left(x+2\right).5x^2+x+3\)
= (x2 +x - 2). 5x2 +x + 3
= 5x4 + 5x3 - 5x2 + x + 3.
Mk làm theo đề bạn nói cho mk: c) khi chia cho (x-1)(x+2) thì đc thương là 5x^2 và còn dư
Tìm đa thức bậc 2 sao cho: \(f_{\left(x\right)}-f_{\left(x-1\right)}=x\)
áp dụng tính tổng: S = 1 + 2 + 3 +...+ n
Cho hàm số: \(f\left(x\right)=\frac{2x+1}{x^2\left(x+1\right)^2}\). Tìm các số nguyên x, y sao cho:
\(S=f_{\left(1\right)}+f_{\left(2\right)}+f_{\left(3\right)}+...+f_{\left(x\right)}=\frac{2y\left(x+1\right)^3-1}{\left(x+1\right)^2}-19+x\)
AI NHANH MK TICK! CÁM ƠN TRƯỚC!
Câu hỏi của Nguyễn Bá Huy h - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo nhé!
\(f\left(x\right)=\frac{2x+1}{x^2\left(x+1\right)^2}=\frac{x^2+2x+1-x^2}{x^2\left(x+1\right)^2}=\frac{\left(x+1\right)^2-x^2}{x^2\left(x+1\right)^2}\)
\(=\frac{1}{x^2}-\frac{1}{\left(x+1\right)^2}\)
\(\Rightarrow f\left(1\right)=\frac{1}{1^2}-\frac{1}{2^2}\)
\(f\left(2\right)=\frac{1}{2^2}-\frac{1}{3^2}\)
\(f\left(3\right)=\frac{1}{3^2}-\frac{1}{4^2}\)
...
\(f\left(x\right)=\frac{1}{x^2}-\frac{1}{\left(x+1\right)^2}\)
Lúc đó: \(f\left(1\right)+f\left(2\right)+f\left(3\right)+...+f\left(x\right)=\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+\frac{1}{3^2}\)
\(-\frac{1}{4^2}+...+\frac{1}{x^2}-\frac{1}{\left(x+1\right)^2}=1-\frac{1}{\left(x+1\right)^2}\)
Thay về đầu bài, ta được: \(1-\frac{1}{\left(x+1\right)^2}=\frac{2y\left(x+1\right)^3-1}{\left(x+1\right)^2}-19+x\)
\(\Leftrightarrow1-\frac{1}{\left(x+1\right)^2}=2y\left(x+1\right)-\frac{1}{\left(x+1\right)^2}-19+x\)
\(\Leftrightarrow2y\left(x+1\right)+\left(x+1\right)=21\)
\(\Leftrightarrow\left(x+1\right)\left(2y+1\right)=21\)
\(\Rightarrow\hept{\begin{cases}x+1\\2y+1\end{cases}}\inƯ\left(21\right)=\left\{\pm1;\pm3;\pm7;\pm21\right\}\)
Lập bảng:
\(x+1\) | \(1\) | \(3\) | \(7\) | \(21\) | \(-1\) | \(-3\) | \(-7\) | \(-21\) |
\(2y+1\) | \(21\) | \(7\) | \(3\) | \(1\) | \(-21\) | \(-7\) | \(-3\) | \(-1\) |
\(x\) | \(0\) | \(2\) | \(6\) | \(20\) | \(-2\) | \(-4\) | \(-8\) | \(-22\) |
\(y\) | \(10\) | \(3\) | \(1\) | \(0\) | \(-11\) | \(-4\) | \(-2\) | \(-1\) |
Mà \(x\ne0\)nên \(\left(x,y\right)\in\left\{\left(2,3\right);\left(6,1\right);\left(20,0\right);\left(-2,-11\right);\left(-4,-4\right);\left(-8,-2\right)\right\}\)\(\left(-22,-1\right)\)
Cho y = f (x) = \(2x^2-3\) x + 5
\(f_{\left(0\right)}=\)
\(f_{\left(-2\right)}=\)
\(f_{\left(\sqrt{3}\right)}=\)
b) tìm x để y = 4
Cho đa thức \(f_{\left(x\right)}=ax+b\)
Tìm điều kiện của a, b để :
\(f_{\left(x_1+x_2\right)}=f_{\left(x_1\right)}+f_{\left(x_2\right)}\)
\(x_1;x_2\inℚ\)
tham khảo
https://olm.vn/hoi-dap/detail/68987022286.html
Theo đề bài ta có: (Thay x= x1 + x2;x=x1;..lần lượt vào biểu thức f(x) thôi mà?)
\(f_{\left(x_1+x_2\right)}=a\left(x_1+x_2\right)+b=f_{\left(x_1\right)}+f_{\left(x_2\right)}=a\left(x_1+x_2\right)+2b\) (gộp thừa số chung ở chỗ f(x1) + f(x2)
Tức là \(f_{\left(x_1+x_2\right)}-\left(f_{\left(x_1\right)}+f_{\left(x_2\right)}\right)=0\Leftrightarrow b-2b=0\Leftrightarrow b=0\)
Từ đó suy ra a không phụ thuộc vào \(f_{\left(x_1+x_2\right)}=f_{\left(x_1\right)}+f_{\left(x_2\right)}\)
Vậy: b = 0, với mọi a ta đều có: \(f_{\left(x_1+x_2\right)}=f_{\left(x_1\right)}+f_{\left(x_2\right)}\)
Tìm m để f(x)< 0 \(\forall x\in R\)
1 , \(f_{\left(x\right)}=\left(m+1\right)^2-2\left(m-1\right)x+3m-3\)
2 , \(f_{\left(x\right)}=\left(m-2\right)^2-2\left(m-3\right)x+m-1\)
3 , \(f_{\left(x\right)}=mx^2-2\left(m-2\right)x+m-3\)