Cho ΔABC . Tìm điểm M thõa mãn \(\left|\overrightarrow{MA}+\overrightarrow{BC}+\overrightarrow{AB}\right|=\left|\overrightarrow{AC}+\overrightarrow{BA}\right|\)
Cho ΔABC có trọng tâm G . Tìm tập hợp điểm M thõa mãn \(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|\overrightarrow{AB}-\overrightarrow{AC}\right|\)
\(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|\overrightarrow{AB}-\overrightarrow{AC}\right|\)
\(\Leftrightarrow\left|\overrightarrow{MG}+\overrightarrow{GA}+\overrightarrow{MG}+\overrightarrow{GB}+\overrightarrow{MG}+\overrightarrow{GC}\right|=\left|\overrightarrow{AB}+\overrightarrow{CA}\right|\)
\(\Leftrightarrow\left|3\overrightarrow{MG}+\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\right|=\left|\overrightarrow{CB}\right|\)
\(\Leftrightarrow\left|3\overrightarrow{MG}\right|=\left|\overrightarrow{CB}\right|\)
\(\Leftrightarrow MG=\dfrac{1}{3}BC\)
Tập hợp M là đường tròn tâm G bán kính \(R=\dfrac{BC}{3}\)
ChoΔABC tìm điểm M thõa mãn \(\left|\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{MA}\right|=\left|\overrightarrow{MC}+\overrightarrow{BA}+\overrightarrow{CB}\right|\)
Dựng hình bình hành ABDC \(\Rightarrow\overrightarrow{AB}+\overrightarrow{AC}=\overrightarrow{AD}\)
\(\left|\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{MA}\right|=\left|\overrightarrow{MC}+\overrightarrow{BA}+\overrightarrow{CB}\right|\)
\(\Leftrightarrow\left|\overrightarrow{AD}+\overrightarrow{MA}\right|=\left|\overrightarrow{MC}+\overrightarrow{CA}\right|\)
\(\Leftrightarrow\left|\overrightarrow{MD}\right|=\left|\overrightarrow{MA}\right|\)
\(\Leftrightarrow MD=MA\)
\(\Rightarrow\) Tập hợp M là đường trung trực của đoạn thẳng AD
Cho ΔABC trọng tâm G , gọi I là trung điểm BC . Tìm M là điểm thõa mãn \(2\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=3\left|\overrightarrow{MB}+\overrightarrow{MC}\right|\)
Do G là trọng tâm ABC \(\Rightarrow\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\)
Do I là trung điểm BC \(\Rightarrow\overrightarrow{MB}+\overrightarrow{MC}=2\overrightarrow{MI}\)
\(2\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=3\left|\overrightarrow{MB}+\overrightarrow{MC}\right|\)
\(\Leftrightarrow2\left|\overrightarrow{MG}+\overrightarrow{GA}+\overrightarrow{MG}+\overrightarrow{GB}+\overrightarrow{MG}+\overrightarrow{GC}\right|=3.\left|2\overrightarrow{MI}\right|\)
\(\Leftrightarrow2.\left|3\overrightarrow{MG}+\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\right|=6\left|\overrightarrow{MI}\right|\)
\(\Leftrightarrow6\left|\overrightarrow{MG}\right|=6\left|\overrightarrow{MI}\right|\)
\(\Leftrightarrow MG=MI\)
Tập hợp M là đường trung trực của đoạn thẳng IG
Cho ΔABC . Tìm tập hợp điểm M thõa mãn \(\left|3\overrightarrow{MA}+2\overrightarrow{MB}-2\overrightarrow{MC}\right|=\left|\overrightarrow{MB}-\overrightarrow{MC}\right|\)
Qua A dựng đường thẳng d song song BC, trên d lấy điểm I sao cho \(\overrightarrow{IA}=\dfrac{2}{3}\overrightarrow{BC}\)
\(\Rightarrow3\overrightarrow{IA}=2\overrightarrow{BC}\Rightarrow3\overrightarrow{IA}+2\overrightarrow{CB}=\overrightarrow{0}\)
Ta có:
\(\left|3\overrightarrow{MA}+2\overrightarrow{MB}-2\overrightarrow{MC}\right|=\left|\overrightarrow{MB}-\overrightarrow{MC}\right|\)
\(\Leftrightarrow\left|3\overrightarrow{MA}+2\left(\overrightarrow{MB}+\overrightarrow{CM}\right)\right|=\left|\overrightarrow{MB}+\overrightarrow{CM}\right|\)
\(\Leftrightarrow\left|3\overrightarrow{MA}+2\overrightarrow{CB}\right|=\left|\overrightarrow{CB}\right|\)
\(\Leftrightarrow\left|3\overrightarrow{MI}+3\overrightarrow{IA}+2\overrightarrow{CB}\right|=\left|\overrightarrow{CB}\right|\)
\(\Leftrightarrow\left|3\overrightarrow{MI}\right|=\left|\overrightarrow{CB}\right|\)
\(\Leftrightarrow MI=\dfrac{1}{3}BC\)
Tập hợp M là đường tròn tâm I bán kính \(\dfrac{BC}{3}\)
Cho ΔABC .Tìm điểm M thõa mãn \(\overrightarrow{MA}+\overrightarrow{AB}=\overrightarrow{CB}+\overrightarrow{AC}\)
Lời giải:
\(\overrightarrow{MA}=\overrightarrow{CB}+\overrightarrow{AC}-\overrightarrow{AB}=\overrightarrow{AB}-\overrightarrow{AB}=\overrightarrow{0}\)
$\Rightarrow M\equiv A$
Cho hình bình hành ABCD . Tìm quỹ tích điểm M thõa mãn \(\left|\overrightarrow{MA}-\overrightarrow{BM}\right|=\left|\overrightarrow{MC}-\overrightarrow{DM}\right|\)
Gọi P và Q lần lượt là trung điểm AB và CD \(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{MA}+\overrightarrow{MB}=2\overrightarrow{MP}\\\overrightarrow{MC}+\overrightarrow{MD}=2\overrightarrow{MQ}\end{matrix}\right.\)
\(\left|\overrightarrow{MA}-\overrightarrow{BM}\right|=\left|\overrightarrow{MC}-\overrightarrow{DM}\right|\)
\(\Leftrightarrow\left|\overrightarrow{MA}+\overrightarrow{MB}\right|=\left|\overrightarrow{MC}+\overrightarrow{MD}\right|\)
\(\Leftrightarrow\left|2\overrightarrow{MP}\right|=\left|2\overrightarrow{MQ}\right|\)
\(\Leftrightarrow MP=MQ\)
Tập hợp M là đường trung trực của đoạn PQ
Cho ΔABC tìm tập hợp các điểm M thỏa:
a/ \(\left|\overrightarrow{MA}+\overrightarrow{MB}\right|=\left|\overrightarrow{MC}+\overrightarrow{MB}\right|\)
b/ \(\left|2\overrightarrow{MA}+\overrightarrow{MB}\right|=\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|\)
cho tam giác ABC vuông tại A, biết AB=3a, AC=4a. Tập hợp các điểm M thỏa mãn
a) \(\left|3\overrightarrow{MA}-\overrightarrow{MC}\right|=\left|\overrightarrow{BC}-2\overrightarrow{AB}\right|\)
b) \(2\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=3\left|\overrightarrow{BA}-2\overrightarrow{AC}\right|\)
Cho \(\Delta ABC\), tìm điểm M thỏa mãn điều kiện: \(\left|\overrightarrow{MA}-\overrightarrow{CA}\right|=\left|\overrightarrow{AC}-\overrightarrow{AB}\right|\)
Can u help me???
please, luv u (tymtymtym)
+)\(\left|\overrightarrow{MA}-\overrightarrow{CA}\right|=\left|\overrightarrow{MC}\right|\)
+)\(\left|\overrightarrow{AC}-\overrightarrow{BC}\right|=\left| \overrightarrow{AB}\right|\)
=>MC=AB
=> từ đỉnh C của tam giá ABC lấy điểm M tm MC=AB