Cho biểu thức \(A=1+2^1+2^1+2^2+2^3+...+2^{2021}\)
Tìm x thuộc N sao cho \(2^x=A+1\)
A=1+21+22 +...+22021
2A = 2( 1+21+22 +...+22021 )
2A = 2 + 22 + 23 + ... + 22022
2A - A = ( 2 + 22 + 23 + ... + 22022 ) - ( 1+21+22 +...+22021 )
A = 22022 - 1
2x = A + 1
=> 2x = 22022 - 1 + 1
=> 2x = 22022
=> x = 2022
Vậy x = 2022
2A=2+2^2+...+2^2022
=>A=2^2022-1
2^x=A+1
=>2^x=2^2022
=>x=2022
cho biểu thức A=1+21+22+23+...+22021. tìm x thuộc N sao cho 2x=A+1
Answer :
\(\Rightarrow A+1=1+1+2+2^2+...+2^{2021}\)
\(\Rightarrow A+1=2+2+2^2+...+2^{2021}\)
\(\Rightarrow A+1=2^2+2^2+2^3+...+2^{2021}\)
\(\Rightarrow A+1=2^3+2^3+2^4+...+2^{2021}\)
....
\(\Rightarrow A+1=2^{2021}+2^{2021}=2^{2022}\)
Mà \(2^x=A+1\Rightarrow2^x=2^{2022}\Rightarrow x=2022\)
cho biểu thức A bằng 1+21+21+22+23+.....+22021Tìm x thuộc Nsao cho 2x bằng A+1
Cho 2 biểu thức M=2/3x-1/3 và N=3x-2.(x-1)
a) Tìm x sao cho M=N
b) tìm x sao cho M+n=8
a, Theo bài ra ta có : M = N
hay \(\frac{2}{3}x-\frac{1}{3}=3x-2\left(x-1\right)\)
\(\Leftrightarrow\frac{2x-1}{3}=3x-2x+2\)
\(\Leftrightarrow\frac{2x-1}{3}=x+2\Leftrightarrow\frac{2x-1}{3}=\frac{3x+6}{3}\)
Khử mẫu : \(\Rightarrow2x-1=3x+6\Leftrightarrow-x-7=0\Leftrightarrow x=-7\)
b, Theo bài ra ta có : M + N = 8
hay \(\frac{2x}{3}-\frac{1}{3}+2x-2\left(x-1\right)=8\)
\(\Leftrightarrow\frac{2x-1}{3}+2x-2x+2=8\)
\(\Leftrightarrow\frac{2x-1}{3}-6=0\Leftrightarrow\frac{2x-1-18}{3}=0\Leftrightarrow2x-19=0\Leftrightarrow x=\frac{19}{2}\)
Cho biểu thức A = 1 + 21 + 21+ 22 + 23 + .... + 22021
Tìm x ∈ N sao cho 2x = A + 1
Cho biểu thức sau:
A= \(2.\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{x^2-x}\)
a, tìm điều kiện và rút gọn A
b, tìm x để A = \(\sqrt{2021}\)
ĐKXĐ: x>0; x≠1
A = 2(1√x−1−1√x):(√x+1x2−x)=2[√x−√x+1(√x−1)√x]:√x+1x(√x−1)(√x+1)2(1x−1−1x):(x+1x2−x)=2[x−x+1(x−1)x]:x+1x(x−1)(x+1)
=2√x.(√x−1):1x(√x−1)=2√x=2x.(x−1):1x(x−1)=2x
b) Để A = √20122012 thì 2√x=√20122x=2012
⇔2√x=2√503⇔2x=2503
⇔x=503⇔x=503 (thỏa mãn điều kiện)
Vậy x=503
Cho biểu thức: x-\(\dfrac{x-1}{2}\) +\(\dfrac{x-1}{3}\) + \(\dfrac{x-1}{2016}\) = 0 (với x khác 3 và x khác -3) và ). a)Rút gọn biểu thức A.
b) Tính Q=x2-7x+2021 biết thỏa mãn A= \(-\dfrac{2}{3}\)
a) Tìm x sao cho giá trị biểu thức \(\dfrac{3x-2}{4}\)không nhỏ hơn giá trị của biểu thức \(\dfrac{3x+3}{6}\)
b) Tìm x sao cho giá trị của biểu thức (x+1)2 nhỏ hơn giá trị của biểu thức (x-1)2.
c) Tìm x sao cho giá trị của biểu thức \(\dfrac{2x-3}{35}+\dfrac{x\left(x-2\right)}{7}\) không lớn hơn giá trị của biểu thức \(\dfrac{x^2}{7}-\dfrac{2x-3}{5}\)
a: Để \(\dfrac{3x-2}{4}\) không nhỏ hơn \(\dfrac{3x+3}{6}\) thì \(\dfrac{3x-2}{4}>=\dfrac{3x+3}{6}\)
=>\(\dfrac{6\left(3x-2\right)}{24}>=\dfrac{4\left(3x+3\right)}{24}\)
=>18x-12>=12x+12
=>6x>=24
=>x>=4
b: Để \(\left(x+1\right)^2\) nhỏ hơn \(\left(x-1\right)^2\) thì \(\left(x+1\right)^2< \left(x-1\right)^2\)
=>\(x^2+2x+1< x^2-2x+1\)
=>4x<0
=>x<0
c: Để \(\dfrac{2x-3}{35}+\dfrac{x\left(x-2\right)}{7}\) không lớn hơn \(\dfrac{x^2}{7}-\dfrac{2x-3}{5}\) thì
\(\dfrac{2x-3}{35}+\dfrac{x\left(x-2\right)}{7}< =\dfrac{x^2}{7}-\dfrac{2x-3}{5}\)
=>\(\dfrac{2x-3+5x\left(x-2\right)}{35}< =\dfrac{5x^2-7\cdot\left(2x-3\right)}{35}\)
=>\(2x-3+5x^2-10x< =5x^2-14x+21\)
=>-8x-3<=-14x+21
=>6x<=24
=>x<=4
cho biểu thức A = 1+ 2 mũ 1 + 2 ^ 1 + 2 ^ 2 + 2 ^ 3 + ... + 2 ^ 2021tìm x thuộc N sao cho 2 ^ x = A +1