Giao điểm của parabol y = x 2 + 4 x - 6 và đường thẳng y = 2x + 2 là:
A. (2; 6) và (3; 8) B. (-4; -6) và (1; -1)
C. (1; -1) và (2; 6) D. (-4; -6) và (2; 6)
hoành độ giao điểm của đường thẳng y= 1- x và Parabol y = x2 - 2x + 1
tọa độ giao điểm của đường thẳng d: y= -x + 4 và Parabol y = x2 - 7x + 12
giao điểm của hai parabol y=x2-4 và y=14-x2 là
Lời giải:
PT hoành độ giao điểm 2 parabol:
$x^2-4=14-x^2$
$\Leftrightarrow 2x^2=18\Leftrightarrow x^2=9$
$\Rightarrow x=\pm 3$
$x=3\Rightarrow y=3^2-4=5$
$x=-3\Rightarrow y=(-3)^2-4=5$
Vậy giao điểm của 2 parabol là $(3;5)$ và $(-3;5)$
Câu T. Cho parabol (P): y= x +5x-6. Xác định trục đối xứng, tọa độ đinh của parabol (P), tọa độ giao điểm của parabol (P) với trục hoành.
Sửa đề: (P): \(y=x^2+5x-6\)
Tọa độ đỉnh của (P) là:
\(\left\{{}\begin{matrix}x=\dfrac{-b}{2a}=-\dfrac{5}{2}\\y=-\dfrac{\text{Δ}}{4a}=-\dfrac{5^2-4\cdot1\cdot\left(-6\right)}{4\cdot1}=-\dfrac{25+24}{4}=-\dfrac{49}{4}\end{matrix}\right.\)
=>Trục đối xứng của (P) là \(x=-\dfrac{5}{2}\)
Tọa độ giao điểm của (P) với trục Ox sẽ là nghiệm của hệ phương trình sau đây:
\(\left\{{}\begin{matrix}x^2+5x-6=0\\y=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left(x+6\right)\left(x-1\right)=0\\y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\in\left\{-6;1\right\}\\y=0\end{matrix}\right.\)
Vậy: Tọa độ các giao điểm của (P) với trục Ox là A(-6;0) và B(1;0)
Cho parabol (P) :y= \(\dfrac{1}{2}\)x2 và đường thẳng (d): y= -x+m (x là ẩn,m là tham số)
a. tìm toạ độ giao điểm của parabol (P) với đường thẳng (d) khi m=4
a: Khi m=4 thì (d): y=-x+4
PTHĐGĐ là:
1/2x^2=-x+4
=>x^2=-2x+8
=>x^2+2x-8=0
=>(x+4)(x-2)=0
=>x=2 hoặc x=-4
Khi x=2 thì y=1/2*2^2=2
Khi x=-4 thì y=1/2(-4)^2=8
Tọa độ giao điểm của parabol (P1) : \(y=2x^2+2x+3\) với parabol (P2) : \(y=x^2+6x\) là ?
Pt hoành độ giao điểm của (P1) và (P2) là:
\(2x^2+2x+3=x^2+6x\)
\(\Rightarrow x^2-4x+3=0\)
=> (x - 1).(x - 3) = 0
\(\Rightarrow\left[{}\begin{matrix}x_1=1\\x_2=3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}y_1=7\\y_2=27\end{matrix}\right.\)
Vậy 2 parabol này cắt nhau tại 2 điểm (1;7);(3;27)
Cho một parabol y = a.x2. Gọi M , N là các giao điểm của đường thẳng y = x + 4 với parabol. Tìm toạ độ của M và N theo a
trên mặt phẳng oxy cho đường thẳng(D) y=x-6 và parabol(P) y=-x^2
a>tìm tọa độ giao điểm giả sử A là giao điểm có hoành độ âm và B là giao điểm có hoành độ dương.
b>1 điểm M nằm trên phần cong của parabol từ O đến A M#O,A xác định vị trí của M sao cho Samb=15
Tìm tọa độ giao điểm của parabol (P): y = x2 và d: y = -3x + 4
Lời giải:
PT hoành độ giao điểm:
$x^2=-3x+4$
$\Leftrightarrow x^2+3x-4=0$
$\Leftrightarrow x(x-1)+4(x-1)=0$
$\Leftrightarrow (x-1)(x+4)=0\Rightarrow x=1$ hoặc $x=-4$
Nếu $x=1\Rightarrow y=x^2=1^2=1$. Giao điểm thứ nhất là $(1,1)$
Nếu $x=-4\Rightarrow y=x^2=(-4)^2=16$. Giao điểm thứ 2 là $(-4,16)$
Hoành độ giao điểm của parabol P : y = x 2 - 2 x + 5 và đường thẳng d : x+ y - 6= 0 là :
A. 1 - 5 2 v à - 1 - 5 2
B. không có
C. - 1 - 5 2 v à - 1 + 5 2
D. 1 - 5 2 v à 1 + 5 2
Ta có: x + y -6 = 0 ⇔ y = - x + 6
Hoành độ giao điểm của parabol (P) và đường thẳng (d) là nghiệm của phương trình
x2 – 2x + 5 = -x + 6
⇔ x 2 - x - 1 = 0 ⇔ x = 1 ± 5 2
Vậy hoành độ giao điểm của (P) và (d) là: x = 1 ± 5 2
trong mặt phẳng toạ độ giao điểm của đường thẳng (d) y = (2m+5)x+2m+6 và parabol (P) y = x^2. tìm giá trị của m để (d) cắt (P) tại 2 điểm phân biệt có hoành độ thoả mãn |x1|+|x2|=7
\(\left(d\right)\) cắt \(\left(P\right)\) tại 2 điểm phân biệt \(\Leftrightarrow\Delta>0\)
\(\Leftrightarrow\left(2m+5\right)^2+4\left(2m+6\right)>0\)
\(\Leftrightarrow4m^2+20m+25+8m+24>0\)
\(\Leftrightarrow\left(2m+7\right)^2>0\) (luôn đúng)
Viet \(\left\{{}\begin{matrix}x_1+x_2=2m+5\\x_1x_2=-2m-6\end{matrix}\right.\)
\(\left|x_1\right|+\left|x_2\right|=7\)\(\Leftrightarrow\left(x_1+x_2\right)^2=7^2\)
\(\Leftrightarrow\left(2m+5\right)^2=49\)
\(\Leftrightarrow\left[{}\begin{matrix}m=-6\\m=1\end{matrix}\right.\)
-Chúc bạn học tốt-