Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyen ngoc son
Xem chi tiết
YangSu
6 tháng 3 2022 lúc 16:03

undefined

tamanh nguyen
Xem chi tiết
Nguyễn Hoàng Minh
2 tháng 12 2021 lúc 15:50

\(1,HC=\dfrac{AH^2}{BH}=\dfrac{256}{9}\\ \Rightarrow AB=\sqrt{BH\cdot BC}=\sqrt{\left(\dfrac{256}{9}+9\right)9}=\sqrt{337}\\ 2,BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\\ \Rightarrow BH=\dfrac{AB^2}{BC}=6,4\left(cm\right)\\ 3,AC=\sqrt{BC^2-AB^2}=9\\ \Rightarrow CH=\dfrac{AC^2}{BC}=5,4\\ 4,AC=\sqrt{BC\cdot CH}=\sqrt{9\left(6+9\right)}=3\sqrt{15}\\ 5,AC=\sqrt{BC^2-AB^2}=4\sqrt{7}\left(cm\right)\\ \Rightarrow AH=\dfrac{AB\cdot AC}{BC}=3\sqrt{7}\left(cm\right)\\ 6,AC=\sqrt{BC\cdot CH}=\sqrt{12\left(12+8\right)}=4\sqrt{15}\left(cm\right)\)

Đào Quốc Dũng
Xem chi tiết
Hoàng Đình Đại
15 tháng 12 2019 lúc 22:00

mình định chụp rồi gửi cho bạn mà ko được

Khách vãng lai đã xóa
nguyen huu vu
Xem chi tiết
nguyen huu vu
28 tháng 5 2021 lúc 9:40

giúp mik vs

 

nguyen huu vu
28 tháng 5 2021 lúc 9:40

giúp mik vs mn

nguyenthienho
Xem chi tiết
♥Ngọc
22 tháng 4 2019 lúc 19:07

a, Xét tam giác HAB có: AB= AH2 + BH2 => AB= 42 + 22 => AB= 16 + 4 = 20 => AB = \(\sqrt{20}\)

 Xét tam giác HAC có: AB= HA+ HC=> AC= 4+ 8=> AC= 16 + 64 = 80 => AC = \(\sqrt{80}\)

b, Ta có: AB < AC\(\left(\sqrt{20}< \sqrt{80}\right)\) 

=>\(\widehat{B}< \widehat{C}\:\)(Quan hệ giữa cạnh và góc đối diện)

♥Ngọc
22 tháng 4 2019 lúc 19:08

Á mk nhầm nha \(\widehat{C}< \widehat{B}\)

#Hk_tốt

#Ngọc's_Ken'z

Nguyễn Lê Diệu Anh
Xem chi tiết
nguyen ngoc son
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 6 2023 lúc 20:18

AH=căn 2*18=6cm

AB=căn 6^2+2^2=2*căn 10(cm)

Đỗ trà my
Xem chi tiết
Phạm Duy
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 9 2021 lúc 14:09

Bài 2: 

Ta có: \(\dfrac{HB}{HC}=\dfrac{1}{3}\)

nên HC=3HB

Ta có: \(AH^2=HB\cdot HC\)

\(\Leftrightarrow HB^2=48\)

\(\Leftrightarrow HB=4\sqrt{3}\left(cm\right)\)

\(\Leftrightarrow BC=4\cdot HB=16\sqrt{3}\left(cm\right)\)

Nguyễn Lê Phước Thịnh
12 tháng 9 2021 lúc 14:11

Bài 1:

ta có: \(AB=\dfrac{1}{2}AC\)

\(\Leftrightarrow\dfrac{HB}{HC}=\dfrac{1}{4}\)

\(\Leftrightarrow HC=4HB\)

Ta có: \(AH^2=HB\cdot HC\)

\(\Leftrightarrow HB=1\left(cm\right)\)

\(\Leftrightarrow HC=4\left(cm\right)\)

hay BC=5(cm)

Xét ΔBAC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AB^2=HB\cdot BC\\AC^2=HC\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=\sqrt{5}\left(cm\right)\\AC=2\sqrt{5}\left(cm\right)\end{matrix}\right.\)