Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tuyển Trần Thị
Xem chi tiết
alibaba nguyễn
25 tháng 12 2017 lúc 14:16

Chuẩn hóa: \(a+b+c=1\)

Vì a, b, c là 3 cạnh của tam giác nên ta có: \(a,b,c\in\left(0;\frac{1}{2}\right)\)

Bài toán ban đầu trở thành:

\(P=\left(\frac{4}{1-a}-\frac{1}{a}\right)+\left(\frac{4}{1-b}-\frac{1}{b}\right)+\left(\frac{4}{1-c}-\frac{1}{c}\right)\le9\)

Ta chứng minh: 

\(\frac{4}{1-x}-\frac{1}{x}\le18x-3\)

\(\Leftrightarrow\left(3x-1\right)^2\left(1-2x\right)\ge0\) (đúng)

Áp dụng bài toán ta được

\(P\le18\left(a+b+c\right)-9=9\)

Vậy ......

Nguyen Thi Phuong Anh
25 tháng 12 2017 lúc 14:12

Nhan 2 ve voi a+b+c se ra

Ngọc Phan
Xem chi tiết
Trung Đức Đinh Công
Xem chi tiết
Dương Thiên Tuệ
14 tháng 2 2018 lúc 19:41

a,b,c là độ dài 3 cạnh 1 tam giác nên a+b>c, b+c>a,c+a>b

Ap dụng \(\frac{x}{y}< \frac{x+z}{y+z}\) với \(x< y\Rightarrow\)\(\frac{a}{b+c}< \frac{a+a}{b+c+a}=\frac{2a}{a+b+c}\)

Tương tự \(\frac{b}{c+a}< \frac{2b}{a+b+c}\)

               \(\frac{c}{a+b}< \frac{2c}{a+b+c}\)

Cộng 3 bđt được đpcm

Phan Thị Hà Vy
Xem chi tiết
Nguyễn Tất Đạt
14 tháng 4 2018 lúc 12:32

Do p là nửa chu vi tam giác nên \(2p=a+b+c\)

Ta có bổ đề sau: \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\Leftrightarrow\frac{x+y}{xy}\ge\frac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)

\(\Leftrightarrow x^2+2xy+y^2\ge4xy\Leftrightarrow x^2-2xy+y^2\ge0\Leftrightarrow\left(x-y\right)^2\ge0\)(luôn đúng)

Áp dụng vào bài toán: 

\(\frac{1}{p-a}+\frac{1}{p-b}\ge\frac{4}{p-a+p-b}=\frac{4}{2p-a-b}=\frac{4}{c}\)

Tương tự: \(\frac{1}{p-b}+\frac{1}{p-c}\ge\frac{4}{a},\)\(\frac{1}{p-c}+\frac{1}{p-a}\ge\frac{4}{b}\)

\(\Rightarrow2\left(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\right)\ge\frac{4}{a}+\frac{4}{b}+\frac{4}{c}=4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\Leftrightarrow\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)(đpcm)

Dấu "=" xảy ra khi a=b=c.

Nguyễn Thị Ngọc Hân
Xem chi tiết
Nguyễn Việt Lâm
25 tháng 2 2020 lúc 14:36

\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)

Dấu "=" xảy ra khi \(a=b\)

b/ Áp dụng BĐT ở câu a:

\(\frac{1}{p-a}+\frac{1}{p-b}\ge\frac{4}{2p-\left(a+b\right)}=\frac{4}{c}\)

Tương tự: \(\frac{1}{p-b}+\frac{1}{p-c}\ge\frac{4}{a}\) ; \(\frac{1}{p-a}+\frac{1}{p-c}\ge\frac{4}{b}\)

Cộng vế với vế: \(2\left(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\right)\ge2\left(\frac{2}{a}+\frac{2}{b}+\frac{2}{c}\right)\)

Dấu "=" xảy ra khi \(a=b=c\)

c/ \(2p=a+b+c=18\)

\(\Rightarrow a^2+b^2+c^2\ge\frac{1}{3}\left(a+b+c\right)^2=\frac{18^2}{3}=108\)

Dấu "=" xảy ra khi \(a=b=c=6\)

Khách vãng lai đã xóa
đoàn danh dũng
Xem chi tiết
Phước Nguyễn
12 tháng 2 2016 lúc 13:08

Ta có:  \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)   \(\left(\text{*}\right)\) , với  \(a,b>0\)  (vì  

Thật vậy, áp dụng bất đẳng thức Cô-si cho hai số dương  \(a,b>0\), ta được:

\(a+b\ge2\sqrt{ab}\)   và  \(\frac{1}{a}+\frac{1}{b}\ge2\sqrt{\frac{1}{a}.\frac{1}{b}}=\frac{2}{\sqrt{ab}}\)

Do đó,  \(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\)  \(\Leftrightarrow\)  \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

Dấu  \("="\)  xảy ra  \(\Leftrightarrow\)  \(a=b\)

Vậy, bất đẳng thức  \(\left(\text{*}\right)\)  đã được chứng minh.

                                                               \(----------------------\)

Vì  \(a,b,c,p\)  lần lượt là độ dài ba cạnh và nửa chu vi của tam giác nên \(a,b,c,p>0\)

Áp dụng  bất đẳng thức \(\left(\text{*}\right)\)  với  \(p-a,\)  \(p-b,\)  \(p-c\)  là các số dương, ta có:

\(\frac{1}{p-a}+\frac{1}{p-b}\ge\frac{4}{\left(p-a+p-b\right)}=\frac{4}{\left(2p-a-b\right)}=\frac{4}{c}\)  \(\left(1\right)\)

\(\frac{1}{p-b}+\frac{1}{p-c}\ge\frac{4}{\left(p-b+p-c\right)}=\frac{4}{\left(2p-b-c\right)}=\frac{4}{a}\)  \(\left(2\right)\)

\(\frac{1}{p-c}+\frac{1}{p-a}\ge\frac{4}{\left(p-c+p-a\right)}=\frac{4}{\left(2p-c-a\right)}=\frac{4}{b}\)  \(\left(3\right)\)

Cộng  \(\left(1\right);\)  \(\left(2\right);\)  và  \(\left(3\right)\)  lần lượt vế theo vế, ta được:

\(2\left(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\right)\ge4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\Leftrightarrow\)  \(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)  

Dấu  \("="\)  xảy ra  \(\Leftrightarrow\)  \(p-a=p-b=p-c\), tức là  \(a=b=c\)  hay tam giác đã cho là tam giác đều (vì có 3 cạnh bằng nhau).

Vi Đức Anh
Xem chi tiết
Trần Vân
Xem chi tiết
Nguyễn Việt Lâm
4 tháng 3 2019 lúc 18:20

Do \(p=\dfrac{a+b+c}{2}\Rightarrow2p=a+b+c\)

Ta có: \(\dfrac{1}{p-a}+\dfrac{1}{p-b}\ge\dfrac{4}{2p-\left(a+b\right)}=\dfrac{4}{a+b+c-\left(a+b\right)}=\dfrac{4}{c}\)

\(\dfrac{1}{p-b}+\dfrac{1}{p-c}\ge\dfrac{4}{2p-\left(b+c\right)}=\dfrac{4}{a}\)

\(\dfrac{1}{p-a}+\dfrac{1}{p-c}\ge\dfrac{4}{2p-\left(a+c\right)}=\dfrac{4}{b}\)

Cộng vế với vế:

\(2\left(\dfrac{1}{p-a}+\dfrac{1}{p-b}+\dfrac{1}{p-c}\right)\ge4\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

\(\Rightarrow\dfrac{1}{p-a}+\dfrac{1}{p-b}+\dfrac{1}{p-c}\ge2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

Dấu "=" xảy ra khi \(a=b=c\) hay tam giác là tam giác đều

Khôi Bùi
4 tháng 3 2019 lúc 18:24

Ta có : \(p=\frac{a+b+c}{2}\Rightarrow2p=a+b+c\)

Do a ; b ; c là 3 cạnh tam giác \(\Rightarrow b+c-a;c+a-b;a+b-c>0\)

\(b+c-a>0\Rightarrow\frac{b+c}{2}-\frac{a}{2}>0\Rightarrow\frac{a+b+c}{2}-a>0\Rightarrow p-a>0\)

CMTT , ta có : \(p-b>0;p-c>0\)

Áp dụng BĐT phụ \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) với x ; y > 0 vào bài toán , ta có

\(\frac{1}{p-a}+\frac{1}{p-b}\ge\frac{4}{2p-a-b}=\frac{4}{a+b+c-a-b}=\frac{4}{c}\left(1\right)\)

CMTT : \(\frac{1}{p-a}+\frac{1}{p-c}\ge\frac{4}{b};\frac{1}{p-b}+\frac{1}{p-c}\ge\frac{4}{a}\left(2\right)\)

Từ ( 1 ) ; ( 2 ) \(\Rightarrow2\left(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\right)\ge4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\Rightarrow\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\) \(\left(đpcm\right)\)

Lê Tài Bảo Châu
Xem chi tiết
Linh Linh
3 tháng 3 2019 lúc 13:17

Nếu Đặt p là nửa chu vi => p = (a + b + c)/2 => 2p = a + b + c 
=> p - a = (a + b + c)/2 - a 
=> p - a = (b + c + a - 2a)/2 
=> p - a = (b + c - a)/2 
=> 2(p - a) = b + c - a (1) 
Tương tự ta chứng minh được: 
2(p - b) = a + c - b (2) 
2(p - c) = a + b - c (3) 
Từ (1); (2) và (3) => 1/(a + b - c) + 1/(b +c - a) +1/(c +a - b) 
= 1/[ 2(p - c) ] + 1/[ 2(p - a) ] + 1/[ 2(p - b) ] 
=1/2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ] 
Bây giờ ta đã đưa bài toán về chứng minh 
1/2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ] ≥ 1/a + 1/b + 1/c 
Ta có: (x - y)² ≥ 0 
<=> x² - 2xy + y² ≥ 0 
<=> x² - 2xy + y² + 4xy ≥ 4xy 
<=> x² + 2xy + y² ≥ 4xy 
<=> (x + y)² ≥ 4xy 
=> với x + y ≠ 0 và xy ≠ 0 
=> (x + y)²/(x+ y) ≥ 4xy/(x + y) 
=> (x + y) ≥ 4xy/(x + y) 
=> (x + y)/xy ≥ (4xy)/[xy(x + y)] 
=> 1/x + 1/y ≥ 4/(x + y) (*) 
Áp dụng (*) với x = p - a và y = p - b ta được: 
1/(p - a) + 1/(p - b) ≥ 4/(p - a + p - b) 
=> 1/(p - a) + 1/(p - b) ≥ 4/(2p - a - b) 
=> 1/(p - a) + 1/(p - b) ≥ 4/(a + b + c - a - b) 
=> 1/(p - a) + 1/(p - b) ≥ 4/c (4) 
Chứng minh tương tự ta được: 
1/(p - a) + 1/(p - c) ≥ 4/b (5) 
1/(p - b) + 1/(p - c) ≥ 4/a (6) 
Cộng vế với vế của (4);(5) và (6) ta được: 
1/(p - a) + 1/(p - b) + 1/(p - a) + 1/(p - c) + 1/(p - b) + 1/(p - c) ≥ 4/c + 4/b + 4/a 
=> 2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ] ≥ 4/c + 4/b + 4/a 
=> 2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ] ≥ 4(1/a + 1/b + 1/c) 
=> 1/(p - a) + 1/(p - b) + 1/(p - c) ≥ 2(1/a + 1/b + 1/c) 
=> 1/2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ] ≥ 1/2.( 2(1/a + 1/b + 1/c) ) 
=> 1/2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ] ≥ 1/a + 1/b + 1/c 
Dấu bằng xảy ra <=> a = b = c. 

Sai thì thôi nha !!! k mk nha

Girl
3 tháng 3 2019 lúc 13:19

\(a\ge b;a\ge c\Rightarrow a+a+a\ge a+b+c\Rightarrow3a\ge a+b+c\Rightarrow\frac{a+b+c}{3}\le a\) (1)

bđt tam giác: \(a< b+c\Rightarrow a+a< a+b+c\Rightarrow2a< a+b+c\Rightarrow a< \frac{a+b+c}{2}\)(2)

(1); (2) suy ra đpcm

Lê Tài Bảo Châu
3 tháng 3 2019 lúc 13:24

Không hiểu cách làm của bạn. Bài làm này chỉ cần bình thường thôi

 Ta có: \(a\ge b,a\ge c\)

          \(\Rightarrow b+c\le2a\)

          \(\Rightarrow a+b+c\le3a\)

           \(\Rightarrow\frac{a+b+c}{3}\le a\)  (1)

Xét \(\Delta ABC\)có \(a< b+c\)

                            \(\Rightarrow2a< a+b+c\)

                            \(\Rightarrow a< \frac{a+b+c}{2}\)  (2)

Từ (1) và (2) \(\Rightarrow\frac{a+b+c}{3}\le a< \frac{a+b+c}{2}\)( đpcm)

              ( a<b+c vì trong một tam giác tổng độ dài 2 cạnh bao giờ cũng lớn hơn 1 một cạnh )