Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
bí ẩn
Xem chi tiết
ngoc
Xem chi tiết
Nguyễn Việt Lâm
3 tháng 9 2020 lúc 17:22

\(\frac{1-tana}{1+tana}=\frac{1-\frac{sina}{cosa}}{1+\frac{sina}{cosa}}=\frac{\frac{1}{cosa}\left(cosa-sina\right)}{\frac{1}{cosa}\left(cosa+sina\right)}=\frac{cosa-sina}{cosa+sina}\)

tamanh nguyen
Xem chi tiết
Ank Dương
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 8 2023 lúc 15:44

1: 

a: sin a=căn 3/2

\(cosa=\sqrt{1-sin^2a}=\sqrt{1-\dfrac{3}{4}}=\sqrt{\dfrac{1}{4}}=\dfrac{1}{2}\)

\(tana=\dfrac{\sqrt{3}}{2}:\dfrac{1}{2}=\sqrt{3}\)

cot a=1/tan a=1/căn 3

b: \(tana=2\)

=>cot a=1/tan a=1/2

\(1+tan^2a=\dfrac{1}{cos^2a}\)

=>\(\dfrac{1}{cos^2a}=5\)

=>cos^2a=1/5

=>cosa=1/căn 5

\(sina=\sqrt{1-cos^2a}=\sqrt{\dfrac{4}{5}}=\dfrac{2}{\sqrt{5}}\)

c: \(cosa=\sqrt{1-\left(\dfrac{5}{13}\right)^2}=\dfrac{12}{13}\)

tan a=5/13:12/13=5/12

cot a=1:5/12=12/5

Bao Gia
Xem chi tiết
Hồng Minh Nguyễn_BLINK
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 10 2021 lúc 20:54

a: \(\dfrac{\cos\alpha}{1-\sin\alpha}=\dfrac{1+\sin\alpha}{\cos\alpha}\)

\(\Leftrightarrow\cos^2\alpha=1-\sin^2\alpha\)(đúng)

Nguyễn Lê Phước Thịnh
2 tháng 10 2021 lúc 22:23

b: Ta có: \(\dfrac{\left(\sin\alpha+\cos\alpha\right)^2-\left(\sin\alpha-\cos\alpha\right)^2}{\sin\alpha\cdot\cos\alpha}\)

\(=\dfrac{4\cdot\sin\alpha\cdot\cos\alpha}{\sin\alpha\cdot\cos\alpha}\)

=4

Nguyễn Sinh Hùng
Xem chi tiết
Trần Thị Ngọc Duyên
Xem chi tiết
Bảo Nam Phan
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 7 2023 lúc 18:02

a: VT=sin^2a(sin^2a+cos^2a)+cos^2a

=sin^2a+cos^2a

=1=VP

b: \(VT=\dfrac{sina+sina\cdot cosa+sina-sina\cdot cosa}{1-cos^2a}=\dfrac{2sina}{sin^2a}=\dfrac{2}{sina}=VP\)

c: \(VT=\dfrac{sin^2a+1+2cosa+cos^2a}{sina\left(1+cosa\right)}\)

\(=\dfrac{2\left(cosa+1\right)}{sina\left(1+cosa\right)}=\dfrac{2}{sina}=VP\)

Duyên Triệu
Xem chi tiết
Thái Hưng Mai Thanh
21 tháng 3 2022 lúc 19:58

\(sin\left(\text{α}-\dfrac{\Pi}{4}\right)-cos\left(\text{α}-\dfrac{\Pi}{4}\right)\)

\(=sin\text{α}.cos\dfrac{\Pi}{4}-cos\text{α}-sin\dfrac{\Pi}{4}-\left(cos\text{α}.cos\dfrac{\Pi}{4}+sin\text{α}.sin\dfrac{\Pi}{4}\right)\)

\(=sin\text{α}.\dfrac{\sqrt{2}}{2}-\dfrac{1}{3}.\dfrac{\sqrt{2}}{2}-\dfrac{1}{3}.\dfrac{\sqrt{2}}{2}-sin\text{α}.\dfrac{\sqrt{2}}{2}\)

\(=\dfrac{-2\sqrt{2}}{6}\)

\(=\dfrac{-\sqrt{2}}{3}\)