Biện luận số nghiệm của phương trình sau
a) (4-5m)x+6m-2k+2m-8=0
b) (3+2m)x-3m-5k+4m+3=0
Biện luận số nghiệm của phương trình sau
a) (4-5m)x+6m-2k+2m-8=0
b) (3+2m)x-3m-5k+4m+3=0
chắc x là ẩn, m là tham số, còn k thì ... chịu :)
Câu 14: Trong các bộ ba đoạn thẳng có độ dài như sau, trường hợp nào không là độ dài
ba cạnh của một tam giác?
A. 9m, 4m, 6m
B. 4m, 5m, 1m.
C. 7m, 7m, 3m.
D. 6m, 6m, 6m.
Câu 14: Trong các bộ ba đoạn thẳng có độ dài như sau, trường hợp nào không là độ dài
ba cạnh của một tam giác?
A. 9m, 4m, 6m
B. 4m, 5m, 1m.
C. 7m, 7m, 3m.
D. 6m, 6m, 6m.
Ta có các trường hợp trên đều thỏa mãn điều kiện của BĐT \(\Delta\) nhưng riêng ý $B$ là không thỏa mãn vì: \(4+1=5\)
Một hình thang có diện tích 60m2 , hiệu của hai đáy bằng 4m. Hãy tính độ dài mỗi đáy , biết rằng nếu đáy lớn được tăng thêm 2m thì diện tích hình thang sẽ tăng thêm 6m2 ?
A. 10m và 3m B. 7m và 5m C. 8m và 6m D. 7m và 3m
làm ra bài giải
1. (x+2)^2 +2 (x-1)=(x+4).(x-1)
tìm m để phương trình là ptbn
2. (12m+7)x +3m-1=0
3. (-5-2m)x+1=0
Vo No
4. (4m^2-1)x+6m^2-m-1=0
No Vx
5. (m2-6m+5)x+4m-4=0
Tìm m để hàm số
a) y = (2m - 10)x + 2 đồng biến
b) y = (2 - 5m)x + 4m - 3 đồng biến
c) y = (3 - 7m)x - 2 + 4m nghịch biến
d) y = m(3 - 2x) + x - 2 nghịch biến
e) y = (3 - √m)x - 2 là hàm số bậc nhất
f) y = \(\left(\sqrt{m-2}-1\right)x+15\) là hàm số bậc nhất
g) y = (m² + 6m + 9)x + 2 đồng biến
h) y = \(\dfrac{m-1}{m-4}x+2\) là hàm số bậc nhất
\(Ta.có:y=ax+b\)
HSĐB khi a>0 ; HSNB khi a<0
Từ đây em giải các a ra thôi nè!
a: Để hàm số đồng biến thì 2m-10>0
=>2m>10
=>m>5
b: Để hàm số đồng biến thì 2-5m>0
=>5m<2
=>m<2/5
c: Để hàm số nghịch biến thì 3-7m<0
=>7m>3
=>m>3/7
d:
\(y=m\left(3-2x\right)+x-2\)
\(=3m-2mx+x-2\)
\(=x\left(-2m+1\right)+3m-2\)
Để hàm số nghịch biến thì -2m+1<0
=>-2m<-1
=>m>1/2
e: Để đây là hàm số bậc nhất thì \(\left\{{}\begin{matrix}m>=0\\3-\sqrt{m}\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>=0\\m\ne9\end{matrix}\right.\)
f: Để đây là hàm số bậc nhất thì
\(\left\{{}\begin{matrix}m-2>=0\\\sqrt{m-2}-1< >0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>=2\\\sqrt{m-2}< >1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m>=2\\m-2< >1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>=2\\m< >3\end{matrix}\right.\)
g: Để hàm số đồng biến thì \(m^2+6m+9>0\)
=>\(\left(m+3\right)^2>0\)
=>m+3<>0
=>m<>-3
h: Để đây là hàm số bậc nhất thì \(\dfrac{m-1}{m-4}\ne0\)
=>\(m\notin\left\{1;4\right\}\)
Một ngôi nhà nhỏ hình hộp chữ nhật có chiều dài 6m, chiều rộng 4m và chiều cao là 3m. Để trang trí ngôi nhà nhân dịp Tết, người ta sơn các mặt ngoài. Biết ngôi nhà có 2 cửa sổ có kích thước là 8dm x 6dm và 1 cửa ra vào có kích thước là 2,5m x 1,2m. Tính diện tích cần sơn
\(S_{XQ}=\left(6+4\right)\cdot2\cdot3=60\left(m^2\right)\)
\(S_{TP}=60+2\cdot6\cdot4=108\left(m^2\right)\)
Diện tích cần sơn là 108-8*6*2-2,5*1,2=9(m2)
Giải và biện luận các phương trình sau theo tham số m :
a) \(\left|2x-5m\right|=2x-3m\)
b) \(\left|3x+4m\right|=\left|4x-7m\right|\)
c) \(\left(m+1\right)x^2+\left(2m-3\right)x+m+2=0\)
d) \(\dfrac{x^2-\left(m+1\right)x-\dfrac{21}{4}}{x-3}=2x+m\)
a) \(\left|2x-5m\right|=2x-3m\)
Điều kiện có nghiệm của phương trình là: \(2x-3m\ge0\)\(\Leftrightarrow x\ge\dfrac{3m}{2}\). (1)
pt\(\Leftrightarrow\left[{}\begin{matrix}2x-5m=2x-3m\\2x-5m=-\left(2x-3m\right)\end{matrix}\right.\).
Th1. \(2x-5m=2x-3m\Leftrightarrow-5m=-3m\)\(\Leftrightarrow m=0\).
Thay \(m=0\) vào phương trình ta có: \(\left|2x\right|=2x\) (*)
Dễ thấy (*) có tập nghiệm là: \(\left[0;+\infty\right]\) (Thỏa mãn (1)).
Th2. \(2x-5m=-\left(2x-3m\right)\)\(\Leftrightarrow2x-5m=-2x+3m\)
\(\Leftrightarrow4x=8m\)\(\Leftrightarrow x=2m\).
Để \(x=2m\) là nghiệm của phương trình thì:
\(2m\ge\dfrac{3}{2}m\)\(\Leftrightarrow m\ge0\).
Biện luận:
Với m = 0 phương trình có tập nghiệm là: \(\left[0;+\infty\right]\).
Với \(m>0\) phương trình có nghiệm duy nhất \(x=2m\).
Với m < 0 phương trình vô nghiệm.
b)TXĐ: D = R
\(\left|3x+4m\right|=\left|4x-7m\right|\)\(\Leftrightarrow\left[{}\begin{matrix}3x+4m=4x-7m\\3x+4m=-\left(4x-7m\right)\end{matrix}\right.\)
Th1. \(3x+4m=4x-7m\)\(\Leftrightarrow x=11m\)
Th2. \(3x+4m=-4x+7m\) \(\Leftrightarrow7x=3m\)\(\Leftrightarrow x=\dfrac{3m}{7}\).
Biện luận:
Với mọi giá trị \(m\in R\) phương trình luôn có hai nghiệm:
\(x=11m\) hoặc \(x=\dfrac{3m}{7}\).
c) Th1: \(m+1=0\)\(\Leftrightarrow m=-1\).
Thay \(m=-1\) vào phương trình ta được:
\(-5x+1=0\Leftrightarrow x=\dfrac{1}{5}\).
Th2: \(m+1\ne0\)\(\Leftrightarrow m\ne-1\)
\(\Delta=\left(2m-3\right)^2-4\left(m+1\right)\left(m+2\right)=-24m+1\).
- \(\Delta=0\)\(\Leftrightarrow-24m+1=0\)\(\Leftrightarrow m=\dfrac{1}{24}\). Khi đó phương trình có nghiệm kép:
\(x_1=x_2=\dfrac{-\left(2m-3\right)}{2\left(m+1\right)}=-\dfrac{2.\dfrac{1}{24}-3}{2.\left(\dfrac{1}{24}+1\right)}=-\dfrac{7}{5}\).
- \(\Delta< 0\)\(\Leftrightarrow-24m+1< 0\)\(\Leftrightarrow m>\dfrac{1}{24}\). Khi đó phương trình vô nghiệm.
- \(\Delta>0\Leftrightarrow m< \dfrac{1}{24}\). Khi đó phương trình có hai nghiệm phân biệt:
\(x_1=\dfrac{-\left(2m-3\right)+\sqrt{-24m+1}}{2\left(m+1\right)}\)
\(x_2=\dfrac{-\left(2m-3\right)-\sqrt{-24m+1}}{2\left(m+1\right)}\).
Biện luận:
- Với \(m=-1\) phương trình có duy nhất nghiệm \(x=\dfrac{1}{5}\).
- Với \(m=\dfrac{1}{24}\) phương trình có nghiệm kép: \(x_1=x_2=-\dfrac{7}{5}\).
- Với \(m>\dfrac{1}{24}\) phương trình vô nghiệm.
- Với \(m< \dfrac{1}{24}\) phương trình có hai nghiệm phân biệt:
\(x_1=\dfrac{-\left(2m-3\right)+\sqrt{-24m+1}}{2\left(m+1\right)}\); \(x_1=\dfrac{-\left(2m-3\right)-\sqrt{-24m+1}}{2\left(m+1\right)}\).
Bài 1 toán 9 tìm m và n để các hàm số sau bâc nhất
a, y=(3m-1)(2m+3)x2 - (4m+3)x-5m2+mn-1
b, y=(m2-2mn+2n2)x2-(3m+n)x-5(m-n)+3m2+1
c, y=(m2-5m+6)x2+(m2+mn+6n2)x+3
a: Để đây là hàm số bậc nhất thì (3m-1)(2m+3)<>0
hay \(m\in\left\{\dfrac{1}{3};-\dfrac{3}{2}\right\}\)
c: Để đây là hàm số bậc nhất thì \(\left\{{}\begin{matrix}m^2-5m+6=0\\m^2+mn+6n^2< >0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\in\left\{2;3\right\}\\m^2+mn+6n^2< >0\end{matrix}\right.\)
Trường hợp 1: m=2
\(\Leftrightarrow4+2n+6n^2< >0\)
Đặt \(6n^2+2n+4=0\)
\(\text{Δ}=2^2-4\cdot6\cdot4=4-96=-92< 0\)
Do đó: \(4+2n+6n^2< >0\forall n\)
Trường hợp 2: m=3
\(\Leftrightarrow9+3n+6n^2< >0\)
Đặt \(6n^2+3n+9=0\)
\(\text{Δ}=3^2-4\cdot6\cdot9=9-216=-207< 0\)
Do đó: \(6n^2+3n+9\ne0\forall n\)
Vậy: m=2 hoặc m=3
iết số thích hợp vào chỗ chấm :
6m 8dm = ... dm 2m 20 cm = ... cm
3m 5dm = ... dm 7m 28 cm = ... cm
4m 7dm = ... dm 8m 55cm = ... cm
6m 8dm = 68 dm 2m 20 cm = 220 cm
3m 5dm = 35 dm 7m 28 cm = 728 cm
4m 7dm = 47 dm 8m 55cm = 855 cm
Tìm tất cả các giá trị của tham số m để bất phương trình sau vô nghiệm
J) mx2+mx+1 lớn hơn bằng 0
K) (2m-1)x2+2(m-2)x+m bé hơn 0
L) (3m-2)x2-2(3m-2)x+1 bé hơn bằng 0
M) mx2+(4m+1)x+5m+2 lớn hơn 0
N) (m-1)x2+(4m-3)x+5m-3 bé hơn 0
Hơi nhiều mk ngại làm nên chỉ đăng cách làm thôi nha:
Câu J + M bạn là tìm M để biểu thức đằng trc xảy ra BĐT ngược lại là dc (VD câu J: cho mx2 +mx +1 <0)
Câu K + L +M thì bạn cg tìm m để biểu thức đằng trước xảy ra theo chiều ngược lại nhưng chú ý xét thêm trường hợp là pt bậc nhất nx là được