Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trần Quang Chiến
Xem chi tiết
ngonhuminh
4 tháng 2 2017 lúc 20:45

cái gì là ẩn, tham số, k là cái gi?

Phạm Thị Hằng
4 tháng 2 2017 lúc 20:58

chắc x là ẩn, m là tham số, còn k thì ... chịu :)

Nguyễn Tuệ Minh
Xem chi tiết
Diệu Huyền
14 tháng 5 2020 lúc 9:48

Câu 14: Trong các bộ ba đoạn thẳng có độ dài như sau, trường hợp nào không là độ dài
ba cạnh của một tam giác?
A. 9m, 4m, 6m

B. 4m, 5m, 1m.

C. 7m, 7m, 3m.

D. 6m, 6m, 6m.

Ta có các trường hợp trên đều thỏa mãn điều kiện của BĐT \(\Delta\) nhưng riêng ý $B$ là không thỏa mãn vì: \(4+1=5\)

dinh san di
Xem chi tiết
Vũ Đức Minh
Xem chi tiết
Xem chi tiết

\(Ta.có:y=ax+b\)

HSĐB khi a>0 ; HSNB khi a<0

Từ đây em giải các a ra thôi nè!

Nguyễn Lê Phước Thịnh
15 tháng 10 2023 lúc 9:41

a: Để hàm số đồng biến thì 2m-10>0

=>2m>10

=>m>5

b: Để hàm số đồng biến thì 2-5m>0

=>5m<2

=>m<2/5

c: Để hàm số nghịch biến thì 3-7m<0

=>7m>3

=>m>3/7

d:

\(y=m\left(3-2x\right)+x-2\)

\(=3m-2mx+x-2\)

\(=x\left(-2m+1\right)+3m-2\)

Để hàm số nghịch biến thì -2m+1<0

=>-2m<-1

=>m>1/2

e: Để đây là hàm số bậc nhất thì \(\left\{{}\begin{matrix}m>=0\\3-\sqrt{m}\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>=0\\m\ne9\end{matrix}\right.\)

f: Để đây là hàm số bậc nhất thì

\(\left\{{}\begin{matrix}m-2>=0\\\sqrt{m-2}-1< >0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>=2\\\sqrt{m-2}< >1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m>=2\\m-2< >1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>=2\\m< >3\end{matrix}\right.\)

g: Để hàm số đồng biến thì \(m^2+6m+9>0\)

=>\(\left(m+3\right)^2>0\)

=>m+3<>0

=>m<>-3

h: Để đây là hàm số bậc nhất thì \(\dfrac{m-1}{m-4}\ne0\)

=>\(m\notin\left\{1;4\right\}\)

Ẩn Danh
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 2 2023 lúc 22:52

\(S_{XQ}=\left(6+4\right)\cdot2\cdot3=60\left(m^2\right)\)

\(S_{TP}=60+2\cdot6\cdot4=108\left(m^2\right)\)

Diện tích cần sơn là 108-8*6*2-2,5*1,2=9(m2)

Sách Giáo Khoa
Xem chi tiết
Bùi Thị Vân
5 tháng 5 2017 lúc 14:23

a​) \(\left|2x-5m\right|=2x-3m\)
​Điều kiện có nghiệm của phương trình là: \(2x-3m\ge0\)\(\Leftrightarrow x\ge\dfrac{3m}{2}\). (1)
pt\(\Leftrightarrow\left[{}\begin{matrix}2x-5m=2x-3m\\2x-5m=-\left(2x-3m\right)\end{matrix}\right.\).
Th1. \(2x-5m=2x-3m\Leftrightarrow-5m=-3m\)\(\Leftrightarrow m=0\).
Thay \(m=0\) vào phương trình ta có: \(\left|2x\right|=2x\) (*)
​Dễ thấy (*) có tập nghiệm là: \(\left[0;+\infty\right]\) (Thỏa mãn (1)).
Th2. \(2x-5m=-\left(2x-3m\right)\)\(\Leftrightarrow2x-5m=-2x+3m\)
\(\Leftrightarrow4x=8m\)\(\Leftrightarrow x=2m\).
Để \(x=2m\) là nghiệm của phương trình thì:
\(2m\ge\dfrac{3}{2}m\)\(\Leftrightarrow m\ge0\).
​Biện luận:
​Với m = 0 phương trình có tập nghiệm là: \(\left[0;+\infty\right]\).
​Với \(m>0\) phương trình có nghiệm duy nhất \(x=2m\).
​Với m < 0 phương trình vô nghiệm.

Bùi Thị Vân
5 tháng 5 2017 lúc 14:27

b)TXĐ: D = R
\(\left|3x+4m\right|=\left|4x-7m\right|\)\(\Leftrightarrow\left[{}\begin{matrix}3x+4m=4x-7m\\3x+4m=-\left(4x-7m\right)\end{matrix}\right.\)
Th1. \(3x+4m=4x-7m\)\(\Leftrightarrow x=11m\)
Th2. \(3x+4m=-4x+7m\) \(\Leftrightarrow7x=3m\)\(\Leftrightarrow x=\dfrac{3m}{7}\).
​Biện luận:
​Với mọi giá trị \(m\in R\) phương trình luôn có hai nghiệm:
\(x=11m\) hoặc \(x=\dfrac{3m}{7}\).

Bùi Thị Vân
5 tháng 5 2017 lúc 14:45

c) Th1: \(m+1=0\)\(\Leftrightarrow m=-1\).
Thay \(m=-1\) vào phương trình ta được:
\(-5x+1=0\Leftrightarrow x=\dfrac{1}{5}\).
Th2: \(m+1\ne0\)\(\Leftrightarrow m\ne-1\)
\(\Delta=\left(2m-3\right)^2-4\left(m+1\right)\left(m+2\right)=-24m+1\).
- \(\Delta=0\)\(\Leftrightarrow-24m+1=0\)\(\Leftrightarrow m=\dfrac{1}{24}\). Khi đó phương trình có nghiệm kép:
\(x_1=x_2=\dfrac{-\left(2m-3\right)}{2\left(m+1\right)}=-\dfrac{2.\dfrac{1}{24}-3}{2.\left(\dfrac{1}{24}+1\right)}=-\dfrac{7}{5}\).
- \(\Delta< 0\)\(\Leftrightarrow-24m+1< 0\)\(\Leftrightarrow m>\dfrac{1}{24}\). Khi đó phương trình vô nghiệm.
- \(\Delta>0\Leftrightarrow m< \dfrac{1}{24}\). Khi đó phương trình có hai nghiệm phân biệt:
\(x_1=\dfrac{-\left(2m-3\right)+\sqrt{-24m+1}}{2\left(m+1\right)}\)
\(x_2=\dfrac{-\left(2m-3\right)-\sqrt{-24m+1}}{2\left(m+1\right)}\).
​Biện luận:
​- Với \(m=-1\) phương trình có duy nhất nghiệm \(x=\dfrac{1}{5}\).
​- Với \(m=\dfrac{1}{24}\) phương trình có nghiệm kép: \(x_1=x_2=-\dfrac{7}{5}\).
​- Với \(m>\dfrac{1}{24}\) phương trình vô nghiệm.
​- Với \(m< \dfrac{1}{24}\) phương trình có hai nghiệm phân biệt:
\(x_1=\dfrac{-\left(2m-3\right)+\sqrt{-24m+1}}{2\left(m+1\right)}\); \(x_1=\dfrac{-\left(2m-3\right)-\sqrt{-24m+1}}{2\left(m+1\right)}\).

trịnh khánh duy
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 2 2022 lúc 7:45

a: Để đây là hàm số bậc nhất thì (3m-1)(2m+3)<>0

hay \(m\in\left\{\dfrac{1}{3};-\dfrac{3}{2}\right\}\)

c: Để đây là hàm số bậc nhất thì \(\left\{{}\begin{matrix}m^2-5m+6=0\\m^2+mn+6n^2< >0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\in\left\{2;3\right\}\\m^2+mn+6n^2< >0\end{matrix}\right.\)

Trường hợp 1: m=2

\(\Leftrightarrow4+2n+6n^2< >0\)

Đặt \(6n^2+2n+4=0\)

\(\text{Δ}=2^2-4\cdot6\cdot4=4-96=-92< 0\)

Do đó: \(4+2n+6n^2< >0\forall n\)

Trường hợp 2: m=3

\(\Leftrightarrow9+3n+6n^2< >0\)

Đặt \(6n^2+3n+9=0\)

\(\text{Δ}=3^2-4\cdot6\cdot9=9-216=-207< 0\)

Do đó: \(6n^2+3n+9\ne0\forall n\)

Vậy: m=2 hoặc m=3

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
13 tháng 1 2017 lúc 8:39

6m 8dm = 68 dm    2m 20 cm = 220 cm

3m 5dm = 35 dm    7m 28 cm = 728 cm

4m 7dm = 47 dm    8m 55cm = 855 cm

Vy Vy
Xem chi tiết
Minh Nguyệt
14 tháng 5 2020 lúc 23:22

2x hay x2 vậy bạn???

Vy Vy
14 tháng 5 2020 lúc 23:30

Giúp tui với mng ơi

Minh Nguyệt
14 tháng 5 2020 lúc 23:44

Hơi nhiều mk ngại làm nên chỉ đăng cách làm thôi nha:

Câu J + M bạn là tìm M để biểu thức đằng trc xảy ra BĐT ngược lại là dc (VD câu J: cho mx2 +mx +1 <0)

Câu K + L +M thì bạn cg tìm m để biểu thức đằng trước xảy ra theo chiều ngược lại nhưng chú ý xét thêm trường hợp là pt bậc nhất nx là được