2.\(\left|5x-3\right|-2x=14\)
Làm tính chia :
a) \(\left(2x^3+5x^2-2x+3\right):\left(2x^2-x+1\right)\)
b) \(\left(2x^3-5x^2+6x-15\right):\left(2x-5\right)\)
c) \(\left(x^4-x-14\right):\left(x-2\right)\)
Giải hệ phương trình: \(\hept{\begin{cases}\left(2x-y\right)\left(x^2+y^2\right)+2x^2+6=xy+3y\\\sqrt{3\left(x^2+y\right)+7}+\sqrt{5x^2+5y+14}=4-2x-x^2\end{cases}}\)
Giải phương trình:
1. \(\left\{{}\begin{matrix}4x-2y=3\\6x-3y=5\end{matrix}\right.\)
2. \(\left\{{}\begin{matrix}2x-3y=5\\4x+6y=10\end{matrix}\right.\)
3. \(\left\{{}\begin{matrix}3x-4y+2=0\\5x+2y=14\end{matrix}\right.\)
4. \(\left\{{}\begin{matrix}2x+5y=3\\3x-2y=14\end{matrix}\right.\)
1) \(\left\{{}\begin{matrix}3x-2y=4\\4x+2y=10\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}3x-2y=4\\7x=14\end{matrix}\right.< =>\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
2)\(\left\{{}\begin{matrix}2x+3y=5\\4x+6y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x+6y=10\\4x=6y=10\end{matrix}\right.\)
=> Hệ có vô số nghiệm.
3)\(\left\{{}\begin{matrix}3x-4y=-2\\10x+4y=28\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}3x-4y=-2\\13x=26\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=2\end{matrix}\right.\)
4)\(\left\{{}\begin{matrix}6x+15y=9\\6x-4y=28\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}6x+15y=9\\19y=19\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=-1\end{matrix}\right.\)
\(\left(x^2-5x+3\right)\left(2x^2-5x+1\right)=\left(x^2+5x+3\right)\left(2x^2-5x-1\right)\)
Đề bài này chắc có vấn đề, pt nghiệm rất xấu
Rút gọn được về dạng: \(10x^3-26x^2-3=0\)
Nhưng đây là pt bậc 3 ko có nghiệm đẹp
Giải các bất phương trình, hệ phương trình
a) \(\dfrac{x^2\left(3x-2\right)\left(x^2-1\right)}{\left(-x^2+2x-3\right)\left(2-x\right)^2}\ge0\)
b) \(\dfrac{x-5}{x-1}>2\)
c) \(2x-\sqrt{x^2-5x-14}< 1\)
d) \(x+\sqrt{x^2-4x-5}< 4\)
e) \(\left\{{}\begin{matrix}\left(4-x\right)\left(x^2-2x-3\right)< 0\\x^2\ge\left(x^2-x-3\right)^2\end{matrix}\right.\)
tìm x biết: \(2.\left|5x-3\right|-2x=14\)
Đặt A= 2.|5x-3|-2x=14
=>|5x-3|-x=7 (mình chia tất cả cho 2)
nếu 5x nhỏ hơn hoặc bằng 3
=>|5x-3|=3-5x
thay vào A = 3-5x-2x=7
=>3-7x=7
=>7x=-4
=>x=\(\frac{-4}{7}\)
Nếu 5x lớn hơn 3 =>|5x-3|=5x-3
thay vào A=5x-3-2x=7
=>3x-3=7
=>3x=10
=>x=\(\frac{10}{3}\)
Vậy ...
2|5x-3|-2x=14 suy ra 2|5x-3|=14+2x suy ra |5x-3|=7-x suy ra 5x-3=7-x hoặc 5x-3=-7+x
5x-3=7-x suy ra 5x+x=7+3 suy ra 6x=10 suy ra x= 5/35x-3=-7+x suy ra 5x-x=-7+3 suy ra 4x=-4 suy ra x=-1vây x = 5/3 hoặc x=-1
\(2.\left|5x-3\right|.x=14+2\)
\(2.5x-3.x=16\)
\(2.5x.x=16+3\)
\(2.5.x.x=19\)
\(2.x.x=19:5\)
\(2.x.x=3,8\)
\(x.x=3,8:2\)
\(x.x=1,9\)
chắc vậy
tích cho mk nhé
BÀI 6 tìm x
1,\(2x\left(x-5\right)-\left(3x+2x^2\right)=0\) 2,\(x\left(5-2x\right)+2x\left(x-1\right)=13\)
3,\(2x^3\left(2x-3\right)-x^2\left(4x^2-6x+2\right)=0\) 4,\(5x\left(x-1\right)-\left(x+2\right)\left(5x-7\right)=6\)
5,\(6x^2-\left(2x-3\right)\left(3x+2\right)=1\) 6,\(2x\left(1-x\right)+5=9-2x^2\)
1: \(\Leftrightarrow2x^2-10x-3x-2x^2=0\)
=>-13x=0
=>x=0
2: \(\Leftrightarrow5x-2x^2+2x^2-2x=13\)
=>3x=13
=>x=13/3
3: \(\Leftrightarrow4x^4-6x^3-4x^3+6x^3-2x^2=0\)
=>-2x^2=0
=>x=0
4: \(\Leftrightarrow5x^2-5x-5x^2+7x-10x+14=6\)
=>-8x=6-14=-8
=>x=1
`1)2x(x-5)-(3x+2x^2)=0`
`<=>2x^2-10x-3x-2x^2=0`
`<=>-13x=0`
`<=>x=0`
___________________________________________________
`2)x(5-2x)+2x(x-1)=13`
`<=>5x-2x^2+2x^2-2x=13`
`<=>3x=13<=>x=13/3`
___________________________________________________
`3)2x^3(2x-3)-x^2(4x^2-6x+2)=0`
`<=>4x^4-6x^3-4x^4+6x^3-2x^2=0`
`<=>x=0`
___________________________________________________
`4)5x(x-1)-(x+2)(5x-7)=0`
`<=>5x^2-5x-5x^2+7x-10x+14=0`
`<=>-8x=-14`
`<=>x=7/4`
___________________________________________________
`5)6x^2-(2x-3)(3x+2)=1`
`<=>6x^2-6x^2-4x+9x+6=1`
`<=>5x=-5<=>x=-1`
___________________________________________________
`6)2x(1-x)+5=9-2x^2`
`<=>2x-2x^2+5=9-2x^2`
`<=>2x=4<=>x=2`
Giải hệ : \(\left\{{}\begin{matrix}\left(x-1\right)\sqrt{14-y}+\sqrt{\left(y-2\right)\left(11+2x-x^2\right)}=12\\x^3-3x^2-5x+6=2\sqrt{y-4}\end{matrix}\right.\)
ĐKXĐ: ...
Ta có:
\(\left[\left(x-1\right)\sqrt{14-y}+\sqrt{\left(11+2x-x^2\right)\left(y-2\right)}\right]^2\)
\(\le\left[\left(x-1\right)^2+11+2x-x^2\right]\left(14-y+y-2\right)=144\)
\(\Rightarrow\left(x-1\right)\sqrt{14-y}+\sqrt{\left(y-2\right)\left(11+2x-x^2\right)}\le12\)
Dấu "=" xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}x\ge1\\\left(y-2\right)\left(x-1\right)^2=\left(11+2x-x^2\right)\left(14-y\right)\end{matrix}\right.\)
\(\Leftrightarrow y\left(x^2-2x+1\right)-2x^2+4x-2=154+28x-14x^2-y\left(11+2x-x^2\right)\)
\(\Leftrightarrow12y=-12x^2+24x+156\)
\(\Rightarrow y=-x^2+2x+13\)
Thế vào pt dưới:
\(x^3-3x^2-5x+6=2\sqrt{-x^2+2x+9}\)
\(\Leftrightarrow x^3-3x^2-4x+6-x-2\sqrt{-x^2+2x+9}=0\)
\(\Leftrightarrow\left(x^2-4x\right)\left(x+1\right)+\frac{5\left(x^2-4x\right)}{6-x+2\sqrt{-x^2+2x+9}}=0\)
\(\Leftrightarrow\left(x^2-4x\right)\left(x+1+\frac{5}{6-x+2\sqrt{-x^2+2x+9}}\right)=0\)
\(\Leftrightarrow x^2-4x=0\) (ngoặc to luôn dương với \(1\le x\le1+\sqrt{10}\))
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(l\right)\\x=4\Rightarrow y=...\end{matrix}\right.\)
Chứng Minh rằng giá trị của các biểu thức sau ko phụ thuộc vào biến:
a)\(\left(2-x\right)\left(1+2x\right)+\left(1+x\right)-\left(x^4+x^3-5x^2-5\right)\\ \)
\(b)\left(x^2-7\right)\left(x+2\right)-\left(2x-1\right)\left(x-14\right)+x\left(x^2-2x-22\right)+35\)