ĐKXĐ: ...
Ta có:
\(\left[\left(x-1\right)\sqrt{14-y}+\sqrt{\left(11+2x-x^2\right)\left(y-2\right)}\right]^2\)
\(\le\left[\left(x-1\right)^2+11+2x-x^2\right]\left(14-y+y-2\right)=144\)
\(\Rightarrow\left(x-1\right)\sqrt{14-y}+\sqrt{\left(y-2\right)\left(11+2x-x^2\right)}\le12\)
Dấu "=" xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}x\ge1\\\left(y-2\right)\left(x-1\right)^2=\left(11+2x-x^2\right)\left(14-y\right)\end{matrix}\right.\)
\(\Leftrightarrow y\left(x^2-2x+1\right)-2x^2+4x-2=154+28x-14x^2-y\left(11+2x-x^2\right)\)
\(\Leftrightarrow12y=-12x^2+24x+156\)
\(\Rightarrow y=-x^2+2x+13\)
Thế vào pt dưới:
\(x^3-3x^2-5x+6=2\sqrt{-x^2+2x+9}\)
\(\Leftrightarrow x^3-3x^2-4x+6-x-2\sqrt{-x^2+2x+9}=0\)
\(\Leftrightarrow\left(x^2-4x\right)\left(x+1\right)+\frac{5\left(x^2-4x\right)}{6-x+2\sqrt{-x^2+2x+9}}=0\)
\(\Leftrightarrow\left(x^2-4x\right)\left(x+1+\frac{5}{6-x+2\sqrt{-x^2+2x+9}}\right)=0\)
\(\Leftrightarrow x^2-4x=0\) (ngoặc to luôn dương với \(1\le x\le1+\sqrt{10}\))
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(l\right)\\x=4\Rightarrow y=...\end{matrix}\right.\)