Cho ( C ) : y = x 3 − 3 x 2 + m − 2 x . Biết tiếp tuyến của (C) có hệ số góc nhỏ nhất vuông góc với đường d : x − y + 1 = 0 . Giá trị của m bằng
A. 1
B. 2
C. 4
D. -5
a) cho x+y=a ; x.y =b . Tính
A=x^2+y^2 ; B=x^3+y^3 ; C=x^5+y^5
b) cho x+y=1 . Tính M= 2.(x^3+y^3 ) - 3. ( x^2+y^2 )
a)
A=\(x^2+y^2=\left(x^2+2xy+y^2\right)-2xy=\left(x+y\right)^2-2xy=a^2-2b\)
\(B=x^3+y^3=\left(x^3+3x^2y+3xy^2+y^3\right)-3x^2y-3xy^2=\left(x+y\right)^3-3xy\left(x+y\right)=a^3-3ab\)
\(C=x^5+y^5=\left(x^5+y^5+5x^4y+10x^3y^2+10x^2y^3+5xy^4\right)-5x^4y-10x^3y^2-10x^2y^3-5xy^4\)
\(=\left(x+y\right)^5-5xy\left(x^3+2xy^2+2x^2y+y^3\right)=\left(x+y\right)^5-5xy\left(x^3+3xy^2+3x^2y+y^3-xy^2-x^2y\right)\)
\(=\left(x+y\right)^5-5xy\left(\left(x+y\right)^3-xy\left(x+y\right)\right)=a^5-5b\left(a^3-ab\right)\)
1.Cho x,y,z là các số thực thỏa mãn x+y+z = 2012 và biểu thức
A=\(\dfrac{x^3}{x^2+xy+y^2}+\dfrac{y^3}{y^2+yz+z^2}+\dfrac{z^3}{z^2+zx+x^2}\)
Tìm GTNN của A
2.Cho x,y,z là các số thực dương thỏa mãn x+y+z =2015
Tìm GTNN của biểu thức S=\(\dfrac{x^3}{x^2+y^2}+\dfrac{y^3}{y^2+z^2}+\dfrac{z^3}{z^2+x^2}\)
Ai đấy có thể chỉ cho em cách giải 2 bài này không ạ !! :3 :3
:3
1) Áp dụng bđt Cauchy-Schwarz:
\(A\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{x^3+x^2y+xy^2+y^3+y^2z+yz^2+z^3+z^2x+x^2z}\)
\(=\dfrac{\left(x^2+y^2+z^2\right)^2}{x\left(x^2+y^2+z^2\right)+y\left(x^2+y^2+z^2\right)+z\left(x^2+y^2+z^2\right)}=\dfrac{\left(x^2+y^2+z^2\right)^2}{\left(x+y+z\right)\left(x^2+y^2+z^2\right)}=\dfrac{x^2+y^2+z^2}{x+y+z}\ge\dfrac{\dfrac{\left(x+y+z\right)^2}{3}}{x+y+z}=\dfrac{x+y+z}{3}=\dfrac{2012}{3}\)
\("="\Leftrightarrow x=y=z=\dfrac{2012}{3}\)
2)
Áp dụng bđt AM-GM:
\(\dfrac{x^3}{x^2+y^2}=x-\dfrac{xy^2}{x^2+y^2}\ge x-\dfrac{xy^2}{2xy}=x-\dfrac{y}{2}\)
Chứng minh tương tự và cộng theo vế:
\(S\ge x-\dfrac{y}{2}+y-\dfrac{z}{2}+z-\dfrac{x}{2}=\dfrac{2015}{2}\)
\("="\Leftrightarrow x=y=z=\dfrac{2015}{3}\)
Mk vừa nghĩ ra 1 cách xem thử nhé :v
AM-GM:
\(\left\{{}\begin{matrix}xy\le\dfrac{x^2+y^2}{2}\\yz\le\dfrac{y^2+z^2}{2}\\xz\le\dfrac{x^2+z^2}{2}\end{matrix}\right.\Leftrightarrow A\ge\dfrac{x^3}{x^2+\dfrac{x^2+y^2}{2}+y^2}+\dfrac{y^3}{y^2+\dfrac{y^2+z^2}{2}+z^2}+\dfrac{z^3}{z^2+\dfrac{x^2+z^2}{2}+x^2}\)
\(=\dfrac{x^3}{\dfrac{3}{2}\left(x^2+y^2\right)}+\dfrac{y^3}{\dfrac{3}{2}\left(y^2+z^2\right)}+\dfrac{z^3}{\dfrac{3}{2}\left(x^2+z^2\right)}\)
Rút mẫu ra rồi làm như bài 2 thôi :>
Mọi người giúp mình với mình đang vội!Cảm ơn
1,rút gọn các biểu thức sau
a, x.(x+2)^2 +(x-3).(x^2+3x+9)
b,(a+b).(a^2 -a.b+b^2)-2a.(a-b)^2
c,(x-1)^3 -(x+2).9x^2-2x+4)+3.(x+4).(x-4)
d,(2x-5)^3-(x-3)^3+(2x-5).(4x^2+10x+25)
e,(x^2-xy+y^2).(x-y).(x^2+xy+y^2).(x+y)
2.Cho 2 đơn thức A=(2ax^2y^3)^2 và \B= -1/3 bx^#y )a,b hằng số khác 0)
Tính M=A.B Tìm B của M
b,Cho 2 đa thức C(x) sao cho C(x)+B(x)= -A(x)
(1 điểm) Cho các số thực dương ${x}, \, {y}$ thỏa mãn: $\sqrt{y}(y+1)-6 x-9=(2 x+4) \sqrt{2 x+3}-3 y$.
Tìm giá trị lớn nhất của biểu thức $M=x y+3 y-4 x^{2}-3$.
1)cho các số dương a,b,c .thỏa mãn \(5x^2+2xyz+4y^2+3z^2=60\).tìm MIn của x+y+z
2)cho x,y là các số dương .tìm Min
\(A=\sqrt{\dfrac{x^3}{x^3+8y^3}}+\sqrt{\dfrac{4y^3}{y^3+\left(x+y\right)^3}}\)
3) cho a,b,c không âm thỏa \(a^3+b^3+c^3-3abc=1\)
cm \(x^2+y^2+z^2\ge1\)
Câu 1/
Đặt cái cần tìm là \(P=x+y+z\)
Ta có \(5x^2+2xyz+4y^2+3z^2=60\)
\(\Rightarrow3z^2< 60\)
\(\Rightarrow0< z< 2\sqrt{5}\)
\(\Rightarrow\left\{{}\begin{matrix}20-z^2>0\\9-2z>0\\P-z>0\end{matrix}\right.\)
Thay \(x=P-y-z\) vào điều kiện ban đầu ta được.
\(5\left(P-y-z\right)^2+2yz\left(P-y-z\right)+4y^2+3z^2=60\)
\(\Leftrightarrow\left(9-2z\right)y^2-2\left(P-z\right)\left(5-z\right)y+5\left(P-z\right)^2+3\left(z^2-20\right)=0\)
Để PT theo nghiệm y có nghiệm thì
\(\Delta'=\left(P-z\right)^2\left(5-z\right)^2-\left(9-2z\right)\left[5\left(P-z\right)^2+3\left(z^2-20\right)\right]\ge0\)
\(\Leftrightarrow\left(z^2-20\right)\left[\left(P-z\right)^2+6z-27\right]\ge0\)
\(\Rightarrow\left(P-z\right)^2+6z-27\le0\)
\(\Rightarrow P\le z+\sqrt{27-6z}\le6\) (cái này chỉ cần chuyển z qua VP rồi bình phương 2 vế là thấy liền nhé.
Vậy \(MaxP=6\) khi \(\left\{{}\begin{matrix}x=1\\y=2\\z=3\end{matrix}\right.\)
Câu 3/ Dễ thấy a, b, c không thể đồng thời bằng 0 được.
Ta chứng minh: \(\left(a^2+b^2+c^2\right)^3\ge\left(a^3+b^3+c^3-3abc\right)^2\)
\(\Leftrightarrow\left(ab+bc+ca\right)^2\left(3a^2+3b^2+3c^2-2\left(ab+bc+ca\right)\right)\ge0\)
\(\Leftrightarrow\left(ab+bc+ca\right)^2\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2+a^2+b^2+c^2\right]\ge0\) (đúng)
Từ đây ta suy ra \(a^2+b^2+c^2\ge1\)
Dấu = xảy ra khi \(\left(a,b,c\right)=\left(1,0,0;0,1,0;0,0,1\right)\)
PS: Vì không chứng minh được \(x^2+y^2+z^2\ge1\) nên mình chứng minh \(a^2+b^2+c^2\ge1\) nhé.
Câu 2/
Trước tiên ta có:
\(\sqrt{1+a^3}=\sqrt{\left(1+a\right)\left(1-a+a^2\right)}\le\dfrac{1+a+1-a+a^2}{2}=1+\dfrac{a^2}{2}\)
Quay lại bài toán ta có:
\(A=\sqrt{\dfrac{x^3}{x^3+8y^3}}+\sqrt{\dfrac{4y^3}{y^3+\left(x+y\right)^3}}=\sqrt{\dfrac{1}{1+\left(\dfrac{2y}{x}\right)^3}}+\sqrt{\dfrac{4}{1+\left(\dfrac{x+y}{y}\right)^3}}\)
\(\ge\dfrac{1}{1+\dfrac{1}{2}\left(\dfrac{2y}{x}\right)^2}+\dfrac{2}{1+\dfrac{1}{2}\left(\dfrac{x+y}{y}\right)^2}\)
\(=\dfrac{x^2}{x^2+2y^2}+\dfrac{4y^2}{x^2+3y^2+2xy}\ge\dfrac{x^2}{x^2+2y^2}+\dfrac{4y^2}{2x^2+4y^2}=1\)
Dấu = xảy ra khi x = y
1 a) Cho a,b,c là độ dài 3 cạnh của một tam giác .C/m
a^3b+ab^3-abc^2+2a^2b^2>0(1)
b) cho x+y+z=0.(1).C/m x^4+y^4+z^4= 2(x^2y^2+y^2z^2+z^2x^2)
2 a) cho x+y+z=0.C/tỏ x^3+y^3+z^3=3xyz
b) phân tích đa thức thành nhân tử
(a-b)^3+(b-c)^3+(c-a)^3
2
a
\(x+y+z=0\)
\(\Rightarrow x+y=-z\)
\(\Rightarrow\left(x+y\right)^3=\left(-z\right)^3\)
\(\Rightarrow x^3+y^3+3x^2y+3xy^2=-z^3\)
\(\Rightarrow x^3+y^3+z^3=3xy\left(x+y\right)=3xyz\)
b
Đặt \(a-b=x;b-c=y;c-a=z\Rightarrow x+y+z=0\)
Ta có bài toán mới:Cho \(x+y+z=0\).Phân tích đa thức thành nhân tử:\(x^3+y^3+z^3\)
Áp dụng kết quả câu a ta được:
\(\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3=3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)
b1 Cho x+y=-1 và xy=-12 tính gt của B:
a,A=x^2+2xy+y^2
b,B=x^2+y^2
c,C=x^3+3x^2y+3xy^2+y^3
d,D=x^3+y^3
b2 cho x-y=-3 và xy=10 tínhN
M=x^2-2xy+y^2
N=x^2+y^2
P=x^3-3x^2y+3xy^2-y^3
Q=x^3-y^3
Bài 2:
\(M=x^2-2xy+y^2=\left(x-y\right)^2=\left(-3\right)^2=9\)
\(N=x^2+y^2=\left(x-y\right)^2+2xy=9+2.10=29\)
\(P=x^3-3x^2y+3xy^2-y^3=\left(x-y\right)^3=\left(-3\right)^3=-27\)
\(Q=x^3-y^3=\left(x-y\right)^3+3xy\left(x-y\right)=\left(-3\right)^3+3.10.\left(-3\right)=-117\)
Bài 1:
a) \(A=x^2+2xy+y^2=\left(x+y\right)^2=\left(-1\right)^2=1\)
b) \(B=x^2+y^2=\left(x+y\right)^2-2xy=\left(-1\right)^2-2.\left(-12\right)=25\)
c) \(C=x^3+3x^2y+3xy^2+y^3=\left(x+y\right)^3=\left(-1\right)^3=-1\)
d) \(D=x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=\left(-1\right)^3-3.\left(-12\right).\left(-1\right)=-37\)
, Cho hàm số y=x-1/x^2+mx+4. Tìm m để đồ thị hàm số có 2 đường tiện cận 13, tìm m để(C):y= mx^3-x^2-2x+8m cắt Ox tại 3 điểm phân biệt có Hoành độ âm 14,cho (C) :y= x^3+(m+2) x+1 d:y= 2x-1 Tìm m để d cắt C tại 1 điểm duy nhất có Hoành độ dương 15, tìm m để phương trình -x^4+2x^2+3x+2m=0 có 3 nghiệm phân biệt
1) x^3 - 7x - 6 =0 ; x^2 + y^2 - 6x + 6y +18 = 0.
2) Tìm đa thức f(x), biết rằng f(x) chia cho ( x - 3) thì dư 2, f(x) chia cho (x+4) thì dư 9, f(x) chia cho ( x^2 + x -12 ) thì được thương là ( x^2 +3) và còn dư.
3) Cho x+y=6 và x.y = -4. Tính giá trị của các biểu thức C = x^2 + y^2, D = x^3 + y^3, E= x^3 - y^3
Bài 1:
a: =>x^3-x-6x-6=0
=>x(x-1)(x+1)-6(x+1)=0
=>(x+1)(x-3)(x+2)=0
hay \(x\in\left\{-1;3;-2\right\}\)
b: \(\Leftrightarrow x^2-6x+9+y^2+6y+9=0\)
=>(x-3)^2+(y+3)^2=0
=>x=3 và y=-3