Cho f x = 1 2 .5 2 x + 1 ; g x = 5 x + 4 x . ln 5. Tập nghiệm của bất phương trình f ' x > g ' x là
A. x > 1
B. x > 0
C. 0 < x < 1
D. x < 0
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Bài 1:
Thay x=1 vào hàm số \(y=f\left(x\right)=2x^2-5\), ta được:
\(f\left(1\right)=2\cdot1^2-5=2-5=-3\)
Thay x=-2 vào hàm số \(y=f\left(x\right)=2x^2-5\), ta được:
\(f\left(-2\right)=2\cdot\left(-2\right)^2-5=2\cdot4-5=3\)
Thay x=0 vào hàm số \(y=f\left(x\right)=2x^2-5\), ta được:
\(f\left(0\right)=2\cdot0^2-5=-5\)
Thay x=2 vào hàm số \(y=f\left(x\right)=2x^2-5\), ta được:
\(f\left(2\right)=2\cdot2^2-5=8-5=3\)
Thay \(x=\dfrac{1}{2}\) vào hàm số \(y=f\left(x\right)=2x^2-5\), ta được:
\(f\left(\dfrac{1}{2}\right)=2\cdot\left(\dfrac{1}{2}\right)^2-5=2\cdot\dfrac{1}{4}-5=-\dfrac{9}{2}\)
Vậy: f(1)=-3; f(-2)=3; f(0)=-5; f(2)=3; \(f\left(\dfrac{1}{2}\right)=-\dfrac{9}{2}\)
Bài 1:
\(f(x)=2x^2-5\) thì:
$f(1)=2.1^2-5=-3$
$f(-2)=2(-2)^2-5=3$
$f(0)=2.0^2-5=-5$
$f(2)=2.2^2-5=3$
$f(\frac{1}{2})=2(\frac{1}{2})^2-5=\frac{-9}{2}$
Bài 2:
a) $f(x)=5-2x$ thì:
$f(-2)=5-2(-2)=9$
$f(-1)=5-2(-1)=7$
$f(0)=5-2.0=5$
$f(3)=5-2.3=-1$
b) Với $y=5$ thì $5=5-2x\Rightarrow x=0$
Với $y=3$ thì $3=5-2x\Rightarrow x=1$
Với $y=-1$ thì $-1=5-2x\Rightarrow x=3$
a) cho hàm số y=(f)x=x^6+1/x^3.cmr f(1/2)=f(x)
b) cho hàm số y=(f)x=x^2+1/x^2.CMR f(x)=f(-x)
c) cho hàm số y=(f)x=5^x. Tính f(x+1)-f(x)
HELPPPPPPPPPPPPP ME!
cho hàm số f1(x)=x; f2(x)=-2x; f3(x)=1; f4(x) =5; f5(x) =\(\frac{1}{x}\); f6(x) = x2. Trong các hàm số trên, hàm số nào có tính chất f(-x)=f(x); f(-x)=-f(x); f(x1+x2)=f(x1)+f(x2); f(x1.x2)=f(x1).f(x2)
1,cho hàm số y=f(x)=3x - 2. hãy tính f(-1); f(0); f(-2); f(3)
2,cho hàm số y=f(x)=2x^2 - 5. hãy tính f(1); f(0); f(-2)
3,cho hàm số y= f(x)=5 - 2x.hãy tính f(-1); f(0); f(-2); f(3)
a,hãy tính f(-1); f(0); f(-2); f(3)
b,tính các giá trị tương ứng của x với y=5;3;-1
1.
y=f(-1)=3*(-1)-2=-5
y=f(0)=3*0-2=-2
y=f(-2)=3*(-2)-2=-8
y=f(3)=3*3-2=7
Câu 2,3a làm tương tự,chỉ việc thay f(x) thôi.
3b
Khi y=5 =>5=5-2*x=>2*x=0=> x=0
Khi y=3=>3=5-2*x=>2*x=2=>x=1
Khi y=-1=>-1=5-2*x=>2*x=6=>x=3
f(-1)=3.1-2=3-2=1
f(0)=3.0-2=0-2=-2
f(-2)=3.(-2)-2=-6-2=-8
f(3)=3.3-2=9-2=7
1.
y=f(-1)=3*(-1)-2=-5
y=f(0)=3*0-2=-2
y=f(-2)=3*(-2)-2=-8
y=f(3)=3*3-2=7
Câu 2,3a làm tương tự,chỉ việc thay f(x) thôi.
3b
Khi y=5 =>5=5-2*x=>2*x=0
=> x=0
Khi y=3=>3=5-2*x=>2*x=2=>x=1
Khi y=-1=>-1=5-2*x=>2*x=6
=>x=3
cho các hàm số
a, y=f(x)= 3x^2+x+1
tính f(1) f(-1\3) f(2\3) f(-2) f(-4\3)
b, y=f(x)= |2x-9|-3
tính f(2\3) f(-5\4) f(-5) f(4) f(-3\8)
c, y=2x^2-7 lập bảng các 9 trị tương ứng của y khi
x=0 x=-3 x= -1\2 x=2\3
\(a,f\left(1\right)=3\cdot1^2+1+1=5\\ f\left(-\dfrac{1}{3}\right)=3\cdot\left(-\dfrac{1}{3}\right)^2-\dfrac{1}{3}+1=\dfrac{1}{3}-\dfrac{1}{3}+1=1\\ f\left(\dfrac{2}{3}\right)=3\cdot\left(\dfrac{2}{3}\right)^2-\dfrac{2}{3}+1=\dfrac{4}{3}-\dfrac{2}{3}+1=\dfrac{5}{3}\\ f\left(-2\right)=3\cdot\left(-2\right)^2-2+1=11\\ f\left(-\dfrac{4}{3}\right)=3\cdot\left(-\dfrac{4}{3}\right)^2-\dfrac{4}{3}+1=\dfrac{16}{3}-\dfrac{4}{3}+1=5\)
\(b,f\left(\dfrac{2}{3}\right)=\left|2\cdot\dfrac{2}{3}-9\right|-3=\dfrac{23}{3}-3=\dfrac{14}{3}\\ f\left(-\dfrac{5}{4}\right)=\left|2\cdot\left(-\dfrac{5}{4}\right)-9\right|-3=\dfrac{23}{2}-3=\dfrac{17}{2}\\ f\left(-5\right)=\left|2\left(-5\right)-9\right|-3=19-3=16\\ f\left(4\right)=\left|2\cdot4-9\right|-3=1-3=-2\\ f\left(-\dfrac{3}{8}\right)=\left|2\cdot\left(-\dfrac{3}{8}\right)-9\right|-3=\dfrac{39}{4}-3=\dfrac{27}{4}\)
\(c,x=0\Rightarrow y=2\cdot0^2-7=-7\\ x=-3\Rightarrow y=2\cdot\left(-3\right)^2-7=11\\ x=-\dfrac{1}{2}\Rightarrow y=2\cdot\left(-\dfrac{1}{2}\right)^2-7=\dfrac{-13}{2}\\ x=\dfrac{2}{3}\Rightarrow y=2\cdot\left(\dfrac{2}{3}\right)^2-7=-\dfrac{55}{9}\)
Cho \(f\left(x\right)=x^3-4x+1\).F(1)=3.Tìm F(5)
Cho \(f\left(x\right)=\dfrac{1}{x-1}\) và F(2)=1.Tìm F(x).
Câu 1: Cho hàm số y = 2x\(^2\)
a) Hãy lập bảng tính các giá trị f(-5), f(-3), f(0), f(3), f(5)
b) Tìm x biết f(x) = 8, f(x) = 6 - 4\(\sqrt{2}\)
Câu 2: Cho hàm số y = f(x) = \(\dfrac{1}{3}x^2\)
Tìm các giá trị của x, biết rằng \(y=\dfrac{1}{27}\). Cũng câu hỏi tương tự với y = 5
Câu 1:
a)
\(y=f\left(x\right)=2x^2\) | -5 | -3 | 0 | 3 | 5 |
f(x) | 50 | 18 | 0 | 18 | 50 |
b) Ta có: f(x)=8
\(\Leftrightarrow2x^2=8\)
\(\Leftrightarrow x^2=4\)
hay \(x\in\left\{2;-2\right\}\)
Vậy: Để f(x)=8 thì \(x\in\left\{2;-2\right\}\)
Ta có: \(f\left(x\right)=6-4\sqrt{2}\)
\(\Leftrightarrow2x^2=6-4\sqrt{2}\)
\(\Leftrightarrow x^2=3-2\sqrt{2}\)
\(\Leftrightarrow x=\sqrt{3-2\sqrt{2}}\)
hay \(x=\sqrt{2}-1\)
Vậy: Để \(f\left(x\right)=6-4\sqrt{2}\) thì \(x=\sqrt{2}-1\)
cho hàm số y=f(x0=4*x^2-5
1) tính f(1)
2)tìm x để f(x)=-1
1,Thay x = 1 vào biểu thức ta có
f = 4 x 12 -5
f = -1
2, Đặt f(x) = -1, ta có:
4 x x2 - 5 = -1
4 x x2 = 4
x2 = 4 : 4
x2 = 1
x2=12
=> x = 1 hoặc = -1
Vậy để f(x)=1 thì x ϵ {-1;1}
Cho hàm số f(x) = |x| + 1
a)Tính f(-2), f(-1/2).
b)Tìm x sao cho f(x) = 5
a ) f(-2) = | -2 | + 1 = 3
f(-1/2) =| -1/2 | + 1 =3/2
b ) Ta có : f(x) = 5
<=> |x| + 1 = 5
<=> |x|=4
<=> \(\orbr{\begin{cases}x=4\\x=-4\end{cases}}\)
Vậy x = 4 hoặc x = -4 thì f(x) = 5
Cho hàm số y = f (x) =-1/2 x .Tính f(1);f(-5) ; f(-3/2)
\(f\left(1\right)=-\dfrac{1}{2}\\ f\left(2\right)=-\dfrac{1}{2}\left(-5\right)=\dfrac{5}{2}\\ f\left(-\dfrac{3}{2}\right)=-\dfrac{1}{2}\left(-\dfrac{3}{2}\right)=\dfrac{3}{4}\)
\(\left\{{}\begin{matrix}f\left(1\right)=-\dfrac{1}{2}.1=-\dfrac{1}{2}\\f\left(-5\right)=-\dfrac{1}{2}.\left(-5\right)=\dfrac{5}{2}\\f\left(-\dfrac{3}{2}\right)=\left(-\dfrac{1}{2}\right).\left(-\dfrac{3}{2}\right)=\dfrac{3}{4}\end{matrix}\right.\)
f(1)=−12+1
=-1+1
=0
f(2)=−22+1
=-4+1
= -3
f(3/2)=−(32)2+1
= -2,25+1
= -1,25
f(-2)=−(−2)2+1
=-4 +1
=-3