Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 7 2019 lúc 15:27

Đề kiểm tra 15 phút Hình học 11 Chương 3 có đáp án (Đề 1)

- Gọi O là tâm của hình bình hành ABCD. Ta có:

Đề kiểm tra 15 phút Hình học 11 Chương 3 có đáp án (Đề 1)

- Từ (1) và (2) suy ra:

Đề kiểm tra 15 phút Hình học 11 Chương 3 có đáp án (Đề 1)

Bap xoai
Xem chi tiết
Bé Đầu Đất
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 12 2023 lúc 5:02

Câu 1: B

Câu 2: B

Trần Ngọc Quỳnh
Xem chi tiết
Hoàng Tử Hà
28 tháng 12 2020 lúc 1:48

a/ \(\left\{{}\begin{matrix}S\in SB\subset\left(SBC\right)\\S\in SC\subset\left(SCD\right)\end{matrix}\right.\Rightarrow S=\left(SBC\right)\cap\left(SCD\right)\)

\(\left\{{}\begin{matrix}C\in SC\subset\left(SBC\right)\\C\in SC\subset\left(SCD\right)\end{matrix}\right.\Rightarrow C=\left(SBC\right)\cap\left(SCD\right)\)

\(\Rightarrow\left(SBC\right)\cap\left(SCD\right)=SC\)

b/ Gọi O là giao điểm của AC và BD

\(\Rightarrow\left\{{}\begin{matrix}O=\left(SAC\right)\cap\left(SBD\right)\\S=\left(SAC\right)\cap\left(SBD\right)\end{matrix}\right.\Rightarrow\left(SBD\right)\cap\left(SAC\right)=SO\)

c/ \(\left\{{}\begin{matrix}S=\left(SAD\right)\cap\left(SBC\right)\\Sx//AD//BC\end{matrix}\right.\Rightarrow\left(SAD\right)\cap\left(SBC\right)=Sx\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 1 2019 lúc 5:32

Chọn A.

   Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 1)

- Gọi O là tâm của hình bình hành ABCD. Ta có:

   Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 1)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
18 tháng 3 2019 lúc 3:03

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 11 2017 lúc 11:49

Đáp án D

Tồn tại 5 mặt phẳng thỏa mãn đề bài là:

-        Mp đi qua trung điểm AD,BC,SC,SD

-        Mp đi qua trung điểm CD,AB,SC,SB

-        Mp đi qua trung điểm AD,BC,SB,SA

-        Mp đi qua trung điểm CD,AB,SA,SD

-        Mp đi qua trung điểm SA,SB,SC,SD

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
14 tháng 1 2017 lúc 16:49

Đáp án B

Phương pháp:

Gọi các trung điểm của các cạnh bên và các cạnh đáy.

Tìm các mặt phẳng cách đều 5 điểm S, A, B, C, D.

Cách giải:

Gọi E; F; G; H lần lượt là trung điểm của SA, SB, SC, SD và M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA .

Ta có thể tìm được các mặt phẳng cách đều 5 điểm S, A, B, C, D là (EFGH); (EFNQ); (GHQN); (FGPM); (EHPM)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 3 2018 lúc 3:16

Đáp án D

Tồn tại 5 mặt phẳng thỏa mãn đề bài là:

-        Mp đi qua trung điểm AD,BC,SC,SD

-        Mp đi qua trung điểm CD,AB,SC,SB

-        Mp đi qua trung điểm AD,BC,SB,SA

-        Mp đi qua trung điểm CD,AB,SA,SD

-        Mp đi qua trung điểm SA,SB,SC,SD

Lynn
Xem chi tiết
keditheoanhsang
22 tháng 10 2023 lúc 8:26

Để chứng minh a. ON//(SAB) và b. (OMN)//(SCD), chúng ta có thể sử dụng các định lý và quy tắc trong hình học không gian.

a. Để chứng minh ON//(SAB), ta có thể sử dụng định lý về đường thẳng song song trong hình học không gian. Theo định lý này, nếu có hai đường thẳng cắt một mặt phẳng và các đường thẳng này đều song song với một đường thẳng thứ ba trong mặt phẳng đó, thì hai đường thẳng đó cũng song song với nhau. Áp dụng định lý này, ta có thể chứng minh ON//(SAB) bằng cách chứng minh rằng ON và AB đều song song với một đường thẳng thứ ba trong mặt phẳng chứa chóp S.ABCD.

b. Để chứng minh (OMN)//(SCD), ta cũng có thể sử dụng định lý về đường thẳng song song trong hình học không gian. Tương tự như trường hợp trước, ta cần chứng minh rằng OM và CD đều song song với một đường thẳng thứ ba trong mặt phẳng chứa chóp S.ABCD.

Tuy nhiên, để chứng minh chính xác các phần a và b, cần có thêm thông tin về các góc và độ dài trong hình chóp S.ABCD.