Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x − 3 1 = y 1 = z + 2 1 và điểm M 2 ; − 1 ; 0 . Gọi (S) là mặt cầu có tâm I thuộc đường thẳng d và tiếp xúc với mp (Oxy) tại điểm M. Hỏi có bao nhiêu mặt cầu thỏa
A. 2
B. 1
C. 0
D. Vô số
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d: x - 3 2 = y + 2 - 1 = z + 1 4 . Điểm nào sau đây không thuộc đường thẳng
Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng d: x + 1 3 = y - 1 - 2 = z - 2 1 .Đường thẳng d có một VTCP là:
A. a → = 1 ; - 1 ; - 2
B. a → = - 1 ; 1 ; 2
C. a → = 3 ; 2 ; 1
D. a → = 3 ; - 2 ; 1
Đáp án D
Phương pháp:
Đường thẳng d: x - x 0 a = y - y 0 b = z - z 0 c có 1 VTCP là a → = a ; b ; c
Cách giải: Đường thẳng d có 1 VTCP là a → = 3 ; - 2 ; 1
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d: x - 2 - 1 = y - 1 2 = z 1 . Đường thẳng d đi qua điểm nào dưới đây ?
A. M(-1;2;1).
B. N(2;1;1).
C. P(-2;-1;0).
D. Q(2;1;0).
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x + 2 2 = y - 1 - 1 = z - 3 3 . Đường thẳng d đi qua điểm M và có vectơ chỉ phương α d → có tọa độ là:
A. M 2 ; - 1 ; 3 , α d → = - 2 ; 1 ; 3
B. M 2 ; - 1 ; - 3 , α d → = 2 ; - 1 ; 3
C. M - 2 ; 1 ; 3 , α d → = 2 ; - 1 ; 3
D. M 2 ; - 1 ; 3 , α d → = 2 ; - 1 ; - 3
Chọn C
Đường thẳng d đi qua điểm M(-2;1;3) và có vectơ chỉ phương
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x + 2 2 = y - 1 - 1 = z - 3 3 . Đường thẳng d đi qua điểm M và có vectơ chỉ phương α d → có tọa độ là:
A. M 2 ; - 1 ; 3 , α d → = - 2 ; 1 ; 3
B. M 2 ; - 1 ; - 3 , α d → = 2 ; - 1 ; 3
C. M - 2 ; 1 ; 3 , α d → = 2 ; - 1 ; 3
D. M 2 ; - 1 ; 3 , α d → = 2 ; - 1 ; - 3
Chọn C
Đường thẳng d đi qua điểm M(-2;1;3) và có vectơ chỉ phương
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x + 2 2 = y - 1 - 1 = z - 3 3 . Đường thẳng d đi qua điểm M và có vectơ chỉ phương u → có tọa độ là:
A. M 2 ; - 1 ; 3 , u → - 2 ; 1 ; 3
B. M 2 ; - 1 ; - 3 , u → 2 ; - 1 ; 3
C. M - 2 ; 1 ; 3 , u → 2 ; - 1 ; 3
D. M 2 ; - 1 ; 3 , u → 2 ; - 1 ; - 3
Chọn C
Đường thẳng d đi qua điểm M(-2;1;3) và có vectơ chỉ phương u → 2 ; - 1 ; 3 .
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d có phương trình x - 1 3 = y + 2 2 = z - 3 - 4 . Điểm nào sau đây không thuộc đường thẳng d?
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x + y -2z - 1 = 0 và đường thẳng d: x - 2 1 = y - 2 1 = z - 2 . Tọa độ giao điểm của d và là
B. (1;0;0)
C. (2;2;0)
Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng ∆ : x - 1 2 = y - 1 1 = z - 1 - 1 và mặt phẳng P : x+y+z-3=0. Gọi d là đường thẳng nằm trong (P), đi qua giao điểm của Δ và (P), đồng thời vuông góc với Δ. Giao điểm của đường thẳng d với mặt phẳng tọa độ (Oxy) là
A. M(2;2;0)
B. M(-3;2;0)
C. M(-1;4;0)
D. M(-3;4;0)
Trong không gian với hệ tọa độ Oxyz cho đường thẳng d : x = 1 - t y = 2 + 2 t z = 3 + t và mặt phẳng (P): x-y+3=0. Tính số đo góc giữa đường thẳng d và mặt phẳng (P)
A. 60 °
B. 30 °
C. 120 °
D. 45 °